Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The extracellular domain of Staphylococcus aureus LtaS binds insulin and induces insulin resistance during infection

Abstract

Insulin resistance is a risk factor for obesity and diabetes and predisposes individuals to Staphylococcus aureus colonization; however, the contribution of S.aureus to insulin resistance remains unclear. Here, we show that S.aureus infection causes impaired glucose tolerance via secretion of an insulin-binding protein extracellular domain of LtaS, eLtaS, which blocks insulin-mediated glucose uptake. Notably, eLtaS transgenic mice (eLtaStrans) exhibited a metabolic syndrome similar to that observed in patients, including increased food and water consumption, impaired glucose tolerance and decreased hepatic glycogen synthesis. Furthermore, transgenic mice showed significant metabolic differences compared to their wild-type counterparts, particularly for the early insulin resistance marker α-hydroxybutyrate. We subsequently developed a full human monoclonal antibody against eLtaS that blocked the interaction between eLtaS and insulin, which effectively restored glucose tolerance in eLtaStrans and S.aureus-challenged mice. Thus, our results reveal a mechanism for S.aureus-induced insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impaired glucose tolerance in S.aureus-challenged mice.
Fig. 2: eLtaS directly binds to insulin.
Fig. 3: eLtaS impairs insulin sensitivity.
Fig. 4: eLtaS impairs insulin sensitivity in vivo.
Fig. 5: eLtaS impairs insulin sensitivity in vivo.

Similar content being viewed by others

References

  1. Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 26, 19–39 (2005).

    PubMed  PubMed Central  Google Scholar 

  2. Reaven, G. M. The metabolic syndrome: is this diagnosis necessary? Am. J. Clin. Nutr. 83, 1237–1247 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cefalu, W. T. Insulin resistance: cellular and clinical concepts. Exp. Biol. Med. 226, 13–26 (2001).

    Article  CAS  Google Scholar 

  6. Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl Acad. Sci. USA 106, 15430–15435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Jenkins, A. et al. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. mBio 6, e02272-14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 5, 751–762 (2005).

    Article  PubMed  Google Scholar 

  11. Olsen, K. et al. Obesity and Staphylococcus aureus nasal colonization among women and men in a general population. PLoS ONE 8, e63716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, J. A. & O’Connor, J. J. Nasal carriage of Staphylococcus aureus in diabetes mellitus. Lancet 2, 776–777 (1966).

    Article  CAS  PubMed  Google Scholar 

  13. Tuazon, C. U., Perez, A., Kishaba, T. & Sheagren, J. N. Staphylococcus aureus among insulin-injecting diabetic patients. An increased carrier rate. JAMA 231, 1272 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. van Belkum, A. et al. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect. Genet. Evol. 9, 32–47 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Lipsky, B. A. et al. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 39, 885–910 (2004).

    Article  PubMed  Google Scholar 

  16. Smit, J. et al. Diabetes and risk of community-acquired Staphylococcus aureus bacteremia: a population-based case–control study. Eur. J. Endocrinol. 174, 631–639 (2016).

    Article  PubMed  Google Scholar 

  17. Vu, B. G. et al. Chronic superantigen exposure induces systemic inflammation, elevated bloodstream endotoxin, and abnormal glucose tolerance in rabbits: possible role in diabetes. mBio 6, e02554 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grundling, A. & Schneewind, O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 104, 8478–8483 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wormann, M. E., Reichmann, N. T., Malone, C. L., Horswill, A. R. & Grundling, A. Proteolytic cleavage inactivates the Staphylococcus aureus lipoteichoic acid synthase. J. Bacteriol. 193, 5279–5291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, D. et al. Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. Proc. Natl Acad. Sci. USA 106, 1584–1589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y. et al. MAE4, an eLtaS monoclonal antibody, blocks Staphylococcus aureus virulence. Sci. Rep. 5, 17215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang, L., Chiang, S. H. & Saltiel, A. R. Insulin signaling and the regulation of glucose transport. Mol. Med. 10, 65–71 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Intasai, N., Arooncharus, P., Kasinrerk, W. & Tayapiwatana, C. Construction of high-density display of CD147 ectodomain on VCSM13 phage via gpVIII: effects of temperature, IPTG, and helper phage infection-period. Protein Expr. Purif. 32, 323–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bryant, N. J., Govers, R. & James, D. E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol. 3, 267–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Govers, R., Coster, A. C. & James, D. E. Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Mol. Cell. Biol. 24, 6456–6466 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fleig, W. E., Enderle, D., Steudter, S., Nother-Fleig, G. & Ditschuneit, H. Regulation of basal and insulin-stimulated glycogen synthesis in cultured hepatocytes. Inverse relationship to glycogen content. J. Biol. Chem. 262, 1155–1160 (1987).

    CAS  PubMed  Google Scholar 

  28. Miller, T. B. Jr, Garnache, A. K., Cruz, J., McPherson, R. K. & Wolleben, C. Regulation of glycogen metabolism in primary cultures of rat hepatocytes. Restoration of acute effects of insulin and glucose in cells from diabetic rats. J. Biol. Chem. 261, 785–790 (1986).

    CAS  PubMed  Google Scholar 

  29. Dimitriadis, G. et al. Evaluation of glucose transport and its regulation by insulin in human monocytes using flow cytometry. Cytometry A 64, 27–33 (2005).

    Article  PubMed  Google Scholar 

  30. Gall, W. E. et al. α-Hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 5, e10883 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Felig, P., Marliss, E. & Cahill, G. F. Jr. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 281, 811–816 (1969).

    Article  CAS  PubMed  Google Scholar 

  32. Felig, P., Wahren, J., Hendler, R. & Brundin, T. Splanchnic glucose and amino acid metabolism in obesity. J. Clin. Invest. 53, 582–590 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prada, P. O. et al. l-Glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. Diabetologia 50, 1949–1959 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, R. et al. Acylation of exenatide by glycolic acid and its anti-diabetic activities in db/db mice. Pharm. Res. 31, 1958–1966 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Z., Jeppesen, P. B., Gregersen, S., Bach Larsen, L. & Hermansen, K. Chronic exposure to proline causes aminoacidotoxicity and impaired beta-cell function: studies in vitro. Rev. Diabet. Stud. 13, 66–78 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. den Ouden, H. et al. Metabolomic biomarkers for personalised glucose lowering drugs treatment in type 2 diabetes. Metabolomics 12, 27 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen, H. H. et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int. J. Obes. 39, 1241–1248 (2015).

    Article  CAS  Google Scholar 

  39. Kwon, H. & Pessin, J. E. Adipokines mediate inflammation and insulin resistance. Front. Endocrinol. 4, 71 (2013).

    Article  Google Scholar 

  40. Weiss, R. et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 362, 951–957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nathan, D. M. et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30, 753–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Gerstein, H. C. et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 78, 305–312 (2007).

    Article  PubMed  Google Scholar 

  44. Lipsky, B. A., Pecoraro, R. E., Chen, M. S. & Koepsell, T. D. Factors affecting staphylococcal colonization among NIDDM outpatients. Diabetes Care 10, 483–486 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fehniger, T. A. et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med. 193, 219–231 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feng, B. et al. Metabolic profiling analysis of a d-galactosamine/lipopolysaccharide-induced mouse model of fulminant hepatic failure. J. Proteome Res. 6, 2161–2167 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Wu, Q. Wu and Y. Wu (Beijing Institute of Basic Medical Sciences) for technical support on preparation of the frozen tissue sections. This work was supported by grants from the National Natural Science Foundation of China (http://www.nsfc.gov.cn) (31370170) and the Natural Science Foundation of Beijing (http://bjnsf.bjkw.gov.cn/) (7142119). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., F.-J.L. and Z.-C.G. acquired, analysed and interpreted the data. F.-T.D., J.-H.C., Y.-P.G., D.L. and D.-P.H. provided administrative, technical and material support. J.Y. and C.-H.L. analysed the data. C.-M.M. provided material support. J.-N.F. and B.-F.S. supervised the study. G.Y. conceived and designed the study, obtained funding and prepared the manuscript.

Corresponding author

Correspondence to Guang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Table 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, FJ., Guan, ZC. et al. The extracellular domain of Staphylococcus aureus LtaS binds insulin and induces insulin resistance during infection. Nat Microbiol 3, 622–631 (2018). https://doi.org/10.1038/s41564-018-0146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0146-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology