Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence

Abstract

To orchestrate context-dependent signalling programmes, poxviruses encode two dual-specificity enzymes, the F10 kinase and the H1 phosphatase. These signalling mediators are essential for poxvirus production, yet their substrate profiles and systems-level functions remain enigmatic. Using a phosphoproteomic screen of cells infected with wild-type, F10 and H1 mutant vaccinia viruses, we systematically defined the viral signalling network controlled by these enzymes. Quantitative cross-comparison revealed 33 F10 and/or H1 phosphosites within 17 viral proteins. Using this proteotype dataset to inform genotype–phenotype relationships, we found that H1-deficient virions harbour a hidden hypercleavage phenotype driven by reversible phosphorylation of the virus protease I7 (S134). Quantitative phosphoproteomic profiling further revealed that the phosphorylation-dependent activity of the viral early transcription factor, A7 (Y367), underlies the transcription-deficient phenotype of H1 mutant virions. Together, these results highlight the utility of combining quantitative proteotype screens with mutant viruses to uncover proteotype–phenotype–genotype relationships that are masked by classical genetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteotype-based decoding of the viral signalling network.
Fig. 2: F10-dependent phosphorylation of I7 modulates cleavage of viral structural proteins.
Fig. 3: Phosphorylation of I7 S134 is temporally regulated during virus assembly.
Fig. 4: H1 regulates virion-associated I7 proteolytic activity.
Fig. 5: Tyrosine phosphorylation of viral early transcription factor A7 controls virion transcription but not assembly.
Fig. 6: Intact mature virions are formed in the absence of A7 Tyr phosphorylation exemplifying phosphodynamic regulation of poxvirus assembly by F10 and H1.

Similar content being viewed by others

References

  1. Biedenkopf, N., Lier, C. & Becker, S. Dynamic phosphorylation of VP30 is essential for Ebola virus life cycle. J. Virol. 90, 4914–4925 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mondal, A., Potts, G. K., Dawson, A. R., Coon, J. J. & Mehle, A. Phosphorylation at the homotypic interface regulates nucleoprotein oligomerization and assembly of the influenza virus replication machinery. PLoS Pathog. 11, e1004826 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao, X. et al. Phosphorylation of Beet black scorch virus coat protein by PKA is required for assembly and stability of virus particles. Sci. Rep. 5, 11585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Wojcechowskyj, J. A. et al. Quantitative phosphoproteomics reveals extensive cellular reprogramming during HIV-1 entry. Cell Host Microbe 13, 613–623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kato, A. et al. Herpes simplex virus 1 protein kinase Us3 phosphorylates viral dUTPase and regulates its catalytic activity in infected cells. J. Virol. 88, 655–666 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Moss, B. in Fields Virology Vol. 2 (eds Estes, M. K. et al.) 2906–2945 (Lippincott Williams & Wilkins, Philadelphia, 2007).

  9. Resch, W., Hixson, K. K., Moore, R. J., Lipton, M. S. & Moss, B. Protein composition of the vaccinia virus mature virion. Virology 358, 233–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Chung, C.-S. et al. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J. Virol. 80, 2127–2140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Condit, R. C., Moussatche, N. & Traktman, P. In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66, 31–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, S. & Broyles, S. S. Vaccinia protein kinase 2: a second essential serine/threonine protein kinase encoded by vaccinia virus. Proc. Natl Acad. Sci. USA. 91, 7653–7657 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, S. & Shuman, S. Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. J. Virol. 69, 6376–6388 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Byrd, C. M., Bolken, T. C. & Hruby, D. E. The vaccinia virus I7L gene product is the core protein proteinase. J. Virol. 76, 8973–8976 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ericsson, M. et al. Characterization of ts 16, a temperature-sensitive mutant of vaccinia virus. J. Virol. 69, 7072–7086 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Traktman, P., Caligiuri, A., Jesty, S. A., Liu, K. & Sankar, U. Temperature-sensitive mutants with lesions in the vaccinia virus F10 kinase undergo arrest at the earliest stage of virion morphogenesis. J. Virol. 69, 6581–6587 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hedengren-Olcott, M., Byrd, C. M., Watson, J. & Hruby, D. E. The vaccinia virus G1L putative metalloproteinase is essential for viral replication in vivo. J. Virol. 78, 9947–9953 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ansarah-Sobrinho, C. & Moss, B. Role of the I7 protein in proteolytic processing of vaccinia virus membrane and core components. J. Virol. 78, 6335–6343 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ansarah-Sobrinho, C. & Moss, B. Vaccinia virus G1 protein, a predicted metalloprotease, is essential for morphogenesis of infectious virions but not for cleavage of major core proteins. J. Virol. 78, 6855–6863 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Senkevich, T. G., White, C. L., Koonin, E. V. & Moss, B. Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc. Natl Acad. Sci. USA. 99, 6667–6672 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guan, K. L., Broyles, S. S. & Dixon, J. E. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature 350, 359–362 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, K., Lemon, B. & Traktman, P. The dual-specificity phosphatase encoded by vaccinia virus, VH1, is essential for viral transcription in vivo and in vitro. J. Virol. 69, 7823–7834 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mercer, J. & Traktman, P. Genetic and cell biological characterization of the vaccinia virus A30 and G7 phosphoproteins. J. Virol. 79, 7146–7161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Derrien, M., Punjabi, A., Khanna, M., Grubisha, O. & Traktman, P. Tyrosine phosphorylation of A17 during vaccinia virus infection: Involvement of the H1 phosphatase and the F10 kinase. J. Virol. 73, 7287–7296 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Betakova, T., Wolffe, E. J. & Moss, B. Regulation of vaccinia virus morphogenesis: phosphorylation of the A14L and A17L membrane proteins and C-terminal truncation of the A17L protein are dependent on the F10L kinase. J. Virol. 73, 3534–3543 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Szajner, P., Weisberg, A. S. & Moss, B. Evidence for an essential catalytic role of the F10 protein kinase in vaccinia virus morphogenesis. J. Virol. 78, 257–265 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Assarsson, E. et al. Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. Proc. Natl Acad. Sci. USA. 105, 2140–2145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Traktman, P. et al. Elucidating the essential role of the A14 phosphoprotein in vaccinia virus morphogenesis: construction and characterization of a tetracycline-inducible recombinant. J. Virol. 74, 3682–3695 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mercer, J. & Traktman, P. Investigation of structural and functional motifs within the vaccinia virus A14 phosphoprotein, an essential component of the virion membrane. J. Virol. 77, 8857–8871 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu, Y. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158, 1415–1430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ulaeto, D., Grosenbach, D. & Hruby, D. E. The vaccinia virus 4c and A-type inclusion proteins are specific markers for the intracellular mature virus particle. J. Virol. 70, 3372–3377 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Matson, J., Chou, W., Ngo, T. & Gershon, P. D. Static and dynamic protein phosphorylation in the vaccinia virion. Virology 452-453, 310–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Byrd, C. M., Bolken, T. C. & Hruby, D. E. Molecular dissection of the vaccinia virus I7L core protein proteinase. J. Virol. 77, 11279–11283 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Condit, R. C., Motyczka, A. & Spizz, G. Isolation, characterization, and physical mapping of temperature-sensitive mutants of vaccinia virus. Virology 128, 429–443 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Pengue, G., Caputo, A., Rossi, C., Barbanti-Brodano, G. & Lania, L. Transcriptional silencing of human immunodeficiency virus type 1 long terminal repeat-driven gene expression by the Krüppel-associated box repressor domain targeted to the transactivating response element. J. Virol. 69, 6577–6580 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Punjabi, A. & Traktman, P. Cell biological and functional characterization of the vaccinia virus F10 kinase: implications for the mechanism of virion morphogenesis. J. Virol. 79, 2171–2190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grimley, P. M., Rosenblum, E. N., Mims, S. J. & Moss, B. Interruption by rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J. Virol. 6, 519–533 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Unger, B. & Traktman, P. Vaccinia virus morphogenesis: A13 phosphoprotein is required for assembly of mature virions. J. Virol. 78, 8885–8901 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodriguez, D., Rodriguez, J. R. & Esteban, M. The vaccinia virus 14-kilodalton fusion protein forms a stable complex with the processed protein encoded by the vaccinia virus A17L gene. J. Virol. 67, 3435–3440 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Vanslyke, J. K., Whitehead, S. S., Wilson, E. M. & Hruby, D. E. The multistep proteolytic maturation pathway utilized by vaccinia virus P4a protein: a degenerate conserved cleavage motif within core proteins. Virology 183, 467–478 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Sarov, I. & Joklik, W. K. Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology 50, 579–592 (1972).

    Article  CAS  PubMed  Google Scholar 

  42. VanSlyke, J. K., Franke, C. A. & Hruby, D. E. Proteolytic maturation of vaccinia virus core proteins: identification of a conserved motif at the N termini of the 4b and 25K virion proteins. J. Gen. Virol. 72, 411–416 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Whitehead, S. S. & Hruby, D. E. Differential utilization of a conserved motif for the proteolytic maturation of vaccinia virus proteins. Virology 200, 154–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, W. P., Kao, S. Y. & Bauer, W. R. Biosynthesis and post-translational cleavage of vaccinia virus structural protein VP8. Virology 167, 585–590 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Bisht, H., Weisberg, A. S., Szajner, P. & Moss, B. Assembly and disassembly of the capsid-like external scaffold of immature virions during vaccinia virus morphogenesis. J. Virol. 83, 9140–9150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szajner, P., Weisberg, A. S., Lebowitz, J., Heuser, J. & Moss, B. External scaffold of spherical immature poxvirus particles is made of protein trimers, forming a honeycomb lattice. J. Cell Biol. 170, 971–981 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Unger, B., Mercer, J., Boyle, K. A. & Traktman, P. Biogenesis of the vaccinia virus membrane: genetic and ultrastructural analysis of the contributions of the A14 and A17 proteins. J. Virol. 87, 1083–1097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gross, C. H. & Shuman, S. Vaccinia virions lacking the RNA helicase nucleoside triphosphate phosphohydrolase II are defective in early transcription. J. Virol. 70, 8549–8557 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Broyles, S. S., Yuen, L., Shuman, S. & Moss, B. Purification of a factor required for transcription of vaccinia virus early genes. J. Biol. Chem. 263, 10754–10760 (1988).

    CAS  PubMed  Google Scholar 

  50. Hu, X., Wolffe, E. J., Weisberg, A. S., Carroll, L. J. & Moss, B. Repression of the A8L gene, encoding the early transcription factor 82-kilodalton subunit, inhibits morphogenesis of vaccinia virions. J. Virol. 72, 104–112 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Resch, W. & Moss, B. The conserved poxvirus L3 virion protein is required for transcription of vaccinia virus early genes. J. Virol. 79, 14719–14729 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, Z. & Moss, B. Interaction of the vaccinia virus RNA polymerase-associated 94-kilodalton protein with the early transcription factor. J. Virol. 83, 12018–12026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hagen, C. J., Titong, A., Sarnoski, E. A. & Verardi, P. H. Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication. Virus Res. 181, 43–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Hu, X., Carroll, L. J., Wolffe, E. J. & Moss, B. De novo synthesis of the early transcription factor 70-kilodalton subunit is required for morphogenesis of vaccinia virions. J. Virol. 70, 7669–7677 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hutchinson, E. C. et al. Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry. PLoS Pathog. 8, e1002993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bergström Lind, S. et al. The phosphoproteome of the adenovirus type 2 virion. Virology 433, 253–261 (2012).

    Article  PubMed  Google Scholar 

  57. Ngo, T., Mirzakhanyan, Y., Moussatche, N. & Gershon, P. D. Protein primary structure of the vaccinia virion at increased resolution. J. Virol. 90, 9905–9919 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmidt, F. I., Bleck, C. K. E., Helenius, A. & Mercer, J. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J. 30, 3647–3661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Duan, G., Li, X. & Köhn, M. The human DEPhOsphorylation database DEPOD: a 2015 update. Nucleic Acids Res. 43, D531–D535 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt, F. I. et al. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies. Cell Rep. 4, 464–476 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Kilcher, S. et al. siRNA screen of early poxvirus genes identifies the AAA + ATPase D5 as the virus genome-uncoating factor. Cell Host Microbe 15, 103–112 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Bodenmiller, B. & Aebersold, R. Quantitative analysis of protein phosphorylation on a system-wide scale by mass spectrometry-based proteomics. Methods Enzymol. 470, 317–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  69. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

    Article  Google Scholar 

  70. Deutsch, E. W. et al. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin. Appl. 9, 745–754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schilling, B. et al. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in Skyline: application to protein acetylation and phosphorylation. Mol. Cell. Proteom. 11, 202–214 (2012).

    Article  CAS  Google Scholar 

  72. Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen treated 3D liver microtissues. Mol. Cell. Proteom. 14, 1400–1410 (2015).

    Article  CAS  Google Scholar 

  73. Bruderer, R. et al. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol. Cell. Proteom. 16, 2296–2309 (2017).

    Article  CAS  Google Scholar 

  74. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 16, 2296–72 (2008).

    Google Scholar 

  75. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Fathi, Z. & Condit, R. C. Phenotypic characterization of a vaccinia virus temperature-sensitive complementation group affecting a virion component. Virology 181, 273–276 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank P. Traktman, R. Condit, B. Moss and P. H. Verardi for generously donating VACV mutants for this study. We greatly acknowledge A. Frei, S. Götze and A. Leitner for maintenance of the mass spectrometers. We are grateful to all members of the Mercer and Wollscheid laboratories for critical comments and suggestions throughout this project. This work was supported by the Swiss National Science Foundation (31003A_160259 to B.W.) and the InfectX project from the Swiss Initiative in Systems Biology SystemsX.ch (to B.W.), the MRC Programme Grant (MC_UU12018/7) (J.M.), the European Research Council (649101 UbiProPox) (J.M.) and the Swiss National Foundation Ambizione (PZ00P3_131988) (J.M.).

Author information

Authors and Affiliations

Authors

Contributions

K.N., S.K., J.M. and B.W. designed the project and wrote the manuscript. K.N. performed the proteomic experiments. K.N., U.O. and J.V. analysed the proteomics data and U.O. performed the phosphorylation site relocalization analysis. M.S. produced the viruses. S.K., C.B. and C.K.M. designed and performed the biochemical validations. S.K, C.K.E.B. and I.W. performed the EM analysis. A.M. contributed ideas and gave assistance for the phosphoproteomic workflows. All authors discussed the results and implications of the findings and provided comments on the manuscript at all stages.

Corresponding authors

Correspondence to Jason Mercer or Bernd Wollscheid.

Ethics declarations

Competing interests

J.V. is an employee of Biognosys AG and helped with the Spectronaut DIA analysis in the revised version of the manuscript. K.N. joined Biognosys AG during the revision process of the manuscript upon finishing his PhD at ETH Zurich.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Reference.

Reporting Summary

Supplementary Table 1

Label-free quantification phosphoproteome data of HeLa cells infected with VACV WT, H1 and F10, and uninfected cells.

Supplementary Table 2

Label-free quantification of MV WT versus H1 proteomes.

Supplementary Table 3

Label-free quantification phosphoproteome data of MV WT versus H1.

Supplementary Table 4

Label-free quantification data of MV WT versus H1 phosphotyrosine enrichment.

Supplementary Table 5

Primers used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novy, K., Kilcher, S., Omasits, U. et al. Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence. Nat Microbiol 3, 588–599 (2018). https://doi.org/10.1038/s41564-018-0142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0142-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing