Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly

Abstract

Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant–microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avenabarbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cladogram showing phylogenetic relationships between 289 soil heterotrophic bacterial isolates and their origin (media type).
Fig. 2: Growth response in the soil of bacterial isolates to Avena growth based on changes in 16S rRNA gene abundance.
Fig. 3: Distributions of select traits in the genomes of soil bacterial isolates classified into two groups based on the response to plant root growth.
Fig. 4: Changes in A.barbata exudation through plant development (weeks 3, 6, 9 and 12).
Fig. 5: Distributions of root exudate metabolite uptake by isolates presented as the per cent uptake from the exudate medium.
Fig. 6: Substrate preferences of positive and negative responders.

Similar content being viewed by others

References

  1. Hiltner, L. Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arb. DLG 98, 59–78 (1904).

    Google Scholar 

  2. Shi, S. et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6, e00746 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chaparro, J. M. et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8, e55731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Grayston, S. J., Wang, S., Campbell, C. D. & Edwards, A. C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30, 369–378 (1998).

    Article  CAS  Google Scholar 

  7. Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DeAngelis, K. M. et al. Selective progressive response of soil microbial community to wild oat roots. ISME J. 3, 168–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu, Y., Rosencrantz, D., Liesack, W. & Conrad, R. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ. Microbiol. 8, 1351–1360 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schreiter, S. et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 5, 144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pini, F., Galardini, M., Bazzicalupo, M. & Mengoni, A. Plant–bacteria association and symbiosis: are there common genomic traits in Alphaproteobacteria? Genes (Basel) 2, 1017–1032 (2011).

    Article  CAS  Google Scholar 

  14. Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, S. et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 77, 600–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Lebeis, S. L. et al. Plant microbiome. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Lynch, J. M. & Whipps, J. M. Substrate flow in the rhizosphere. Plant Soil 129, 1–10 (1990).

    Article  CAS  Google Scholar 

  18. Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Baetz, U. & Martinoia, E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19, 90–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Aulakh, M. S., Wassmann, R., Bueno, C., Kreuzwieser, J. & Rennenberg, H. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 3, 139–148 (2001).

    Article  CAS  Google Scholar 

  22. Jones, D. L. Organic acids in rhizosphere—a critical review. Plant Soil 205, 25–44 (1998).

    Article  CAS  Google Scholar 

  23. Iannucci, A., Fragasso, M., Platani, C. & Papa, R. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.). Front. Plant Sci. 4, 509 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dakora, F. D. & Phillips, D. A. in Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (ed. Adu-Gyamfi, J. J.) 201–213 (Springer, Dordrecht, 2002). https://doi.org/10.1007/978-94-017-1570-6_23.

  25. Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Hassan, S. & Mathesius, U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J. Exp. Bot. 63, 3429–3444 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Corral-Lugo, A., Daddaoua, A., Ortega, A., Espinosa-Urgel, M. & Krell, T. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci. Signal. 9, ra1 (2016).

    Article  PubMed  Google Scholar 

  28. Huang, X.-F. et al. Rhizosphere interactions: root exudates, microbes, and microbial communities 1. Botany 92, 267–275 (2014).

    Article  Google Scholar 

  29. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R. & Kolter, R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl Acad. Sci. USA 110, E1621–E1630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai, T. et al. Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol. Microbiol. 73, 507–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Silva, L. P. & Northen, T. R. Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment. Curr. Opin. Biotechnol. 34, 209–216 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Baran, R. et al. Exometabolite niche partitioning among sympatric soil bacteria. Nat. Commun. 6, 8289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mao, Y., Li, X., Smyth, E. M., Yannarell, A. C. & Mackie, R. I. Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ. Microbiol. Rep. 6, 293–306 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Souza, R., de Ambrosini, A. & Passaglia, L. M. P. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38, 401–419 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321, 83–115 (2009).

    Article  CAS  Google Scholar 

  37. Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neumann, G. & Römheld, V. in The Rhizosphere (eds Pinton, R. et al.) 23–72 (CRC Press, Boca Raton, 2009).

  39. Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salerno, G. Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci. 8, 63–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Jaeger, C., Lindow, S., Miller, W., Clark, E. & Firestone, M. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Environ. Microbiol. 65, 2685–2690 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vargas, W. A., Mandawe, J. C. & Kenerley, C. M. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol. 151, 792–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lemoine, R. et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lattanzio, V. & Lattanzio, V. in Phytochemistry: Advances in Research (ed. Imperato, F.) 23–67 (Research Signpost, Kerala, 2006).

  45. Iqbal, N., Nazar, R. & Khan, N. A. (eds) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies (Springer, New York, 2015).

  46. Noodén, L. D. (ed.) in Senescence and Aging in Plants 329–368 (Elsevier, Cambridge, MA, 1988). https://doi.org/10.1016/B978-0-12-520920-5.50016-X.

  47. Brown, J. H., Paliyath, G. & Thompson, J. E. in Plant Physiology (ed. Steward, F. C.) 227–276 (Academic Press, San Diego, CA, 1991). https://doi.org/10.1111/j.1399-3054.1981.tb08516.x/full.

  48. Mueller-Roeber, B. & Balazadeh, S. Auxin and its role in plant senescence. J. Plant Growth Regul. 33, 21–33 (2013).

    Article  Google Scholar 

  49. Pilet, P.-E. & Saugy, M. Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol. 83, 33–38 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramachandran, V. K., East, A. K., Karunakaran, R., Downie, J. A. & Poole, P. S. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol. 12, R106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lugtenberg, B. J. J., Kravchenko, L. V. & Simons, M. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1, 439–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Lugtenberg, B. J., Dekkers, L. & Bloemberg, G. V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Blakley, E. R. & Simpson, F. J. The microbial metabolism of cinnamic acid. Can. J. Microbiol. 10, 175–185 (1964).

    Article  CAS  PubMed  Google Scholar 

  54. Yuan, J. et al. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci. Rep. 5, 13438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lowe-Power, T. M. et al Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on tobacco. mBio 7, e00656-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nuccio, E. E. et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97, 1307–1318 (2016).

    Article  PubMed  Google Scholar 

  57. Nunes da Rocha, U. et al. Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front. Microbiol. 6, 277 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. McGinnis, S. & Madden, T. L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20–W25 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vieira-Silva, S. & Rocha, E. P. C. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 6, e1000808 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Subramanian, S. Nearly neutrality and the evolution of codon usage bias in eukaryotic genomes. Genetics 178, 2429–2432 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Yin, C., Li, S. & Li, Q. Network traffic classification via HMM under the guidance of syntactic structure. Comput. Netw. 56, 1814–1825 (2012).

    Article  Google Scholar 

  64. Ren, Q., Chen, K. & Paulsen, I. T. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 35, D274–D279 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  67. Khorassani, R. et al. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant. Biol. 11, 121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bowen, B. P. & Northen, T. R. Dealing with the unknown: metabolomics and metabolite atlases. J. Am. Soc. Mass. Spectrom. 21, 1471–1476 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Smith, C. A. et al. METLIN: a metabolite mass spectral database. Ther. Drug. Monit. 27, 747–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45, 703–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. R: A Language and Environment for Statistical Computing (R Development Core Team, 2017); www.R-project.org.

  74. vegan: community ecology package. R package version 2.4-2 (Blanchet, F. G. et al., 2017); https://CRAN.R-project.org/package=vegan.

  75. agricolae: statistical procedures for agricultural research. R package version 1.2-4 (de Mendiburu, F., 2016); https://CRAN.R-project.org/package=agricolae.

  76. Mevik, B.-H. & Wehrens, R. The plsPackage: principal component and partial least squares regression in R. J. Stat. Softw. 18, 1–23 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the DOE, Office of Science, Office of Biological Environmental Research, including a Genomic Sciences programme award no. DE-SC0010570, DE-SC0016247 and DE-SC0014079 to M.K.F. Work performed at the Lawrence Berkeley National Laboratory including DOE Early Career Awards to D.L. and T.R.N., and work performed at the DOE JGI (http://www.jgi.gov) and at the DOE Joint BioEnergy Institute (http://www.jbei.org) are supported by the DOE, Office of Science, Office of Biological and Environmental Research through Contract No. DE-AC02-05CH11231. D.L. was also supported in part by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 659910. Isolate genome sequencing was conducted by the DOE JGI, a DOE Office of Science User Facility, under a Community Science Program award to E.L.B., supported by the Office of Science of the DOE under Contract no. DE-AC02-05CH11231. We thank C. Castanha for background information on soil temperature and are very grateful to our talented former undergraduate students B. Jargalsaikhan, R. Hossainkhil, D. Ly, S. Ouedraogo and Y. Nguyen for their assistance with maintenance of the bacterial isolate collection.

Author information

Authors and Affiliations

Authors

Contributions

K.Z., T.R.N., M.K.F. and E.L.B. developed the hypotheses. K.Z., K.B.L., N.M., U.N.d.R., S.S. and D.L. performed the experimental analyses. K.Z., H.C., U.K., Z.H., U.N.d.R. and B.P.B. analysed the data. K.Z., T.R.N., M.K.F. and E.L.B. wrote the paper. All authors provided comments and edits on the manuscript.

Corresponding authors

Correspondence to Trent R. Northen or Eoin L. Brodie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1 & 2 and Supplementary Figures 1–14.

Life Sciences Reporting Summary

Supplementary Data Set 1

Additional details on bacterial isolates described in the text, their genome identifiers and their observed response to root growth.

Supplementary Data Set 2

Additional details on transporters and CAZy enzymes identified in the genomes of isolates described in the text, their gene identifiers, classification and differences in their distributions between rhizosphere positive and negative responders.

Supplementary Data Set 3

Additional details on identification of metabolites in Avena barbata exudation described in the text, their theoretical and measured m/z, retention times and relative abundances at different time points of plant growth.

Supplementary Data Set 4

Additional details on identification of metabolites consumed by isolates from Avena barbata exudates described in the text, their theoretical and measured m/z, retention times and differences in uptake between rhizosphere positive and negative responders.

Supplementary Data Set 5

Additional details on prediction of isolate response to root growth based on exometabolite profiles that were used to build a principal component regression (PCR) model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhalnina, K., Louie, K.B., Hao, Z. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3, 470–480 (2018). https://doi.org/10.1038/s41564-018-0129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0129-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research