Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies


Bacterial metabolism plays a fundamental role in gut microbiota ecology and host–microbiome interactions. Yet the metabolic capabilities of most gut bacteria have remained unknown. Here we report growth characteristics of 96 phylogenetically diverse gut bacterial strains across 4 rich and 15 defined media. The vast majority of strains (76) grow in at least one defined medium, enabling accurate assessment of their biosynthetic capabilities. These do not necessarily match phylogenetic similarity, thus indicating a complex evolution of nutritional preferences. We identify mucin utilizers and species inhibited by amino acids and short-chain fatty acids. Our analysis also uncovers media for in vitro studies wherein growth capacity correlates well with in vivo abundance. Further value of the underlying resource is demonstrated by correcting pathway gaps in available genome-scale metabolic models of gut microorganisms. Together, the media resource and the extracted knowledge on growth abilities widen experimental and computational access to the gut microbiota.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Species and media selection.
Fig. 2: Growth profiles of 96 gut bacterial strains across 19 media.
Fig. 3: Species growth patterns provide insights into microbiota ecology.
Fig. 4: Selected metabolic characteristics of gut bacteria revealed by our screen.
Fig. 5: Defined media resource improves genome-scale metabolic models of gut bacteria.


  1. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1095 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Holmes, E., Li, J. V., Marchesi, J. R. & Nicholson, J. K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16, 559–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Sonnenburg, J. L. & Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Luis, A. S. et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat. Microbiol. 3, 210–219 (2017).

    Article  PubMed  Google Scholar 

  7. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G. & Cryan, J. F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48 (2015).

    Article  PubMed  Google Scholar 

  8. Bäumler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85–93 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Curtis, M. M. et al. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16, 759–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sebald, M. & Costilow, R. N. Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants. Appl. Microbiol. 29, 1–6 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lopes, J. N. & Cruz, F. S. Chemically defined media for growing anaerobic bacteria of the genus Veillonella. Antonie Van. Leeuwenhoek 42, 411–420 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    Article  PubMed  Google Scholar 

  16. Larsbrink, J. et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ponomarova, O. & Patil, K. R. Metabolic interactions in microbial communities: untangling the Gordian knot. Curr. Opin. Microbiol. 27, 37–44 (2015).

    Article  PubMed  Google Scholar 

  18. Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Strauss, J. et al. Invasive potential of gut mucosa-derived fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17, 1971–1978 (2011).

    Article  PubMed  Google Scholar 

  22. Grass, J. E., Gould, L. H. & Mahon, B. E. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog. Dis. 10, 131–136 (2013).

  23. Gardiner, B. J. et al. Clinical and microbiological characteristics of Eggerthella lenta bacteremia. J. Clin. Microbiol. 53, 626–635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Könönen, E. & Wade, W. G. Actinomyces and related organisms in human infections. Clin. Microbiol. Rev. 28, 419–442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, G., Mills, D. A. & Block, D. E. Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl. Environ. Microbiol. 75, 1080–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Wegkamp, A., Van Oorschot, W., De Vos, W. M. & Smid, E. J. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl. Environ. Microbiol. 73, 2673–2681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Evans, D. F. et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29, 1035–1041 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rettedal, E. A., Gumpert, H. & Sommer, M. O. A. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun. 5, 4714 (2014).

  30. Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Klumpp, S., Zhang, Z. & Hwa, T. Growth rate-dependent global effects on gene expression in bacteria. Cell 139, 1366–1375 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).

  34. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Bergeim, O. Toxicity of intestinal volatile fatty acids for yeast and Esch. coli. J. Infect. Dis. 66, 222–234 (1940).

    Article  CAS  Google Scholar 

  36. Hentges, D. J. Influence of pH on the inhibitory activity of formic and acetic acids for Shigella. J. Bacteriol. 93, 2029–2030 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. De Felice, M., Levinthal, M., Iaccarino, M. & Guardiola, J. Growth inhibition as a consequence of antagonism between related amino acids: effect of valine in Escherichia coli K-12. Microbiol. Rev. 43, 42–58 (1979).

    PubMed  PubMed Central  Google Scholar 

  38. Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. (2015).

  39. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357 (2017).

  41. Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Lau, J. T. et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 8, 72 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature (2018).

  44. Duncan, S. H., Hold, G. L., Harmsen, H. J. M., Stewart, C. S. & Flint, H. J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52, 2141–2146 (2002).

    CAS  PubMed  Google Scholar 

  45. Buurman, E. T., Pennock, J., Tempest, D. W., Teixeira de Mattos, M. J. & Neijssel, O. M. Replacement of potassium ions by ammonium ions in different micro-organisms grown in potassium-limited chemostat culture. Arch. Microbiol. 152, 58–63 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Roe, A. J., O’Byrne, C., McLaggan, D. & Booth, I. R. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148, 2215–2222 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Nava, G. M., Friedrichsen, H. J. & Stappenbeck, T. S. Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J. 5, 627–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Crost, E. H. et al. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS ONE 8, e76341 (2013).

  50. Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  52. Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–832 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing: commentary. Nature 11, 28 (2010).

    Google Scholar 

  54. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, I. M. A. et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 45, 507–516 (2017).

  56. Markowitz, V. M. et al. IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res. 42, 568–573 (2014).

  57. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Cook, S. I. & Sellin, J. H. Review article: short chain fatty acids in health and disease. Aliment. Pharmacol. Ther. 12, 499–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Massey, L. K., Sokatch, J. R. & Conrad, R. S. Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev. 40, 42–54 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Allison, M. J. Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl. Environ. Microbiol. 35, 872–877 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

  62. Yin, Y. et al. DbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, 445–451 (2012).

    Article  Google Scholar 

  63. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  64. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references


We thank H. KleinJan and L. Maier for experimental assistance, O. Ponomarova for advice on media design and D. Machado for advice on metabolic modelling. Sequencing was performed at Genecore, EMBL. We thank Dupont Health and Nutrition (formerly Danisco Sweeteners OY, Finland) for providing L. acidophilus NCFM, L. paracasei ATCC SDS275, B. animalis subsp. lactis Bl-04 and BI-07, D. Clarke for Shigella sonnei 53 G and the enteropathogenic Escherichia coli strains CFT073, E2348/69, H10407, HM605 and UTI89, E. Denamur for the Escherichia coli strains ED1a and IAI1, M. Blokesch for the Vibrio cholerae strains A1552 and N16961, H. Andrews-Polymenis for the Salmonella enterica typhimurium strains CDC 6516-60 and LT2 and C. Darby for Yersinia pseudotuberculosis YPIII. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 686070. MT and MP were supported by the EMBL interdisciplinary postdoctoral program.

Author information

Authors and Affiliations



M.T., P.B., A.T. and K.R.P. conceived the study. M.T., S.A., A.T. and K.R.P. designed the study. M.T., M.P., A.Z. and G.Z. selected gut bacterial strains. M.T. and M.Klünemann performed in vitro experiments. S.A. analysed data. S.A. and P.J. performed metabolic modelling. S.A. and G.Z. compiled figures. M.Kuhn contributed to in vivo abundance analysis. M.G. annotated sequenced genomes. P.B., A.T. and K.R.P. supervised the study. M.T., S.A. and K.R.P. wrote the manuscript. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Peer Bork, Athanasios Typas or Kiran Raosaheb Patil.

Ethics declarations

Competing interests

A patent application has been filed based on this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9 and Supplementary Figures 1–7.

Life Sciences Reporting Summary

Supplementary Tables

Supplementary Tables 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tramontano, M., Andrejev, S., Pruteanu, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 3, 514–522 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing