Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The TRiC chaperonin controls reovirus replication through outer-capsid folding

Abstract

Viruses are molecular machines sustained through a life cycle that requires replication within host cells. Throughout the infectious cycle, viral and cellular components interact to advance the multistep process required to produce progeny virions. Despite progress made in understanding the virus–host protein interactome, much remains to be discovered about the cellular factors that function during infection, especially those operating at terminal steps in replication. In an RNA interference screen, we identified the eukaryotic chaperonin T-complex protein-1 (TCP-1) ring complex (TRiC; also called CCT for chaperonin containing TCP-1) as a cellular factor required for late events in the replication of mammalian reovirus. We discovered that TRiC functions in reovirus replication through a mechanism that involves folding the viral σ3 major outer-capsid protein into a form capable of assembling onto virus particles. TRiC also complexes with homologous capsid proteins of closely related viruses. Our data define a critical function for TRiC in the viral assembly process and raise the possibility that this mechanism is conserved in related non-enveloped viruses. These results also provide insight into TRiC protein substrates and establish a rationale for the development of small-molecule inhibitors of TRiC as potential antiviral therapeutics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: RNAi screen for cellular mediators of late steps in reovirus replication identifies the TRiC chaperonin.
Fig. 2: The TRiC chaperonin is required for efficient reovirus replication, release and protein expression.
Fig. 3: TRiC redistributes to viral inclusions and is required for inclusion morphogenesis.
Fig. 4: The TRiC chaperonin forms a complex with the reovirus σ3 outer-capsid protein.
Fig. 5: The intracellular biogenesis of native σ3 requires the TRiC chaperonin.
Fig. 6: The TRiC chaperonin folds σ3 into a native, assembly-competent conformation.

References

  1. 1.

    Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dermody, T. S., Parker, J. S. & Sherry, B. in Fields Virology, Vol. 2 (eds. D. M. Knipe & P. M. Howley) pp. 1304–1346 (Lippincott Williams & Wilkins, Philadelphia, 2013).

  3. 3.

    Barton, E. S. et al. Junction adhesion molecule is a receptor for reovirus. Cell 104, 441–451 (2001).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Konopka-Anstadt, J. L. et al. The Nogo receptor NgR1 mediates infection by mammalian reovirus. Cell Host Microbe 15, 681–691 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Maginnis, M. S. et al. NPXY motifs in the β1 integrin cytoplasmic tail are required for functional reovirus entry. J. Virol. 82, 3181–3191 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ebert, D. H., Deussing, J., Peters, C. & Dermody, T. S. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J. Biol. Chem. 277, 24609–24617 (2002).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Leitner, A. et al. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20, 814–825 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bigotti, M. G. & Clarke, A. R. Chaperonins: the hunt for the group II mechanism. Arch. Biochem. Biophys. 474, 331–339 (2008).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Spiess, C., Meyer, A. S., Reissmann, S. & Frydman, J. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 14, 598–604 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yam, A. Y. et al. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat. Struct. Mol. Biol. 15, 1255–1262 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Frydman, J. et al. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gao, Y., Thomas, J. O., Chow, R. L., Lee, G. H. & Cowan, N. J. A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell 69, 1043–1050 (1992).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Gao, Y., Vainberg, I. E., Chow, R. L. & Cowan, N. J. Two cofactors and cytoplasmic chaperonin are required for the folding of alpha- and beta-tubulin. Mol. Cell Biol. 13, 2478–2485 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hong, S. et al. Type D retrovirus Gag polyprotein interacts with the cytosolic chaperonin TRiC. J. Virol. 75, 2526–2534 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lingappa, J. R. et al. A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle. J. Cell Biol. 125, 99–111 (1994).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kashuba, E., Pokrovskaja, K., Klein, G. & Szekely, L. Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex. J. Hum. Virol. 2, 33–37 (1999).

    CAS  PubMed  Google Scholar 

  18. 18.

    Inoue, Y. et al. Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology 410, 38–47 (2011).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Zhang, J. et al. Cellular chaperonin CCTγ contributes to rabies virus replication during infection. J. Virol. 87, 7608–7621 (2013).

  20. 20.

    Fislova, T., Thomas, B., Graef, K. M. & Fodor, E. Association of the influenza virus RNA polymerase subunit PB2 with the host chaperonin CCT. J. Virol. 84, 8691–8699 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Solignat, M., Gay, B., Higgs, S., Briant, L. & Devaux, C. Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393, 183–197 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Fernandez de Castro, I. et al. Reovirus forms neo-organelles for progeny particle assembly within reorganized cell membranes. mBio 5, e00931-13 (2014).

  23. 23.

    Thulasiraman, V., Yang, C. F. & Frydman, J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85–95 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Shing, M. & Coombs, K. M. Assembly of the reovirus outer capsid requires μ1/σ3 interactions which are prevented by misfolded σ3 protein in temperature-sensitive mutant tsG453. Virus Res. 46, 19–29 (1996).

  25. 25.

    Chandran, K. et al. In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteins μ1 and σ3. J. Virol. 73, 3941–3950 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kasembeli, M. et al. Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol. 12, e1001844 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Freund, A. et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell 159, 1389–1403 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Tian, G., Vainberg, I. E., Tap, W. D., Lewis, S. A. & Cowan, N. J. Specificity in chaperonin-mediated protein folding. Nature 375, 250–253 (1995).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Feldman, D. E., Thulasiraman, V., Ferreyra, R. G. & Frydman, J. Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol. Cell 4, 1051–1061 (1999).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Miyata, Y., Shibata, T., Aoshima, M., Tsubata, T. & Nishida, E. The molecular chaperone TRiC/CCT binds to the Trp-Asp 40 (WD40) repeat protein WDR68 and promotes its folding, protein kinase DYRK1A binding, and nuclear accumulation. J. Biol. Chem. 289, 33320–33332 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Virgin, H. W. IV, Mann, M. A., Fields, B. N. & Tyler, K. L. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action. J. Virol. 65, 6772–6781 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Olland, A. M., Jané-Valbuena, J., Schiff, L. A., Nibert, M. L. & Harrison, S. C. Structure of the reovirus outer capsid and dsRNA-binding protein σ3 at 1.8 Å resolution. EMBO J. 20, 979–989 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Miller, J. E. & Samuel, C. E. Proteolytic cleavage of the reovirus σ3 protein results in enhanced double-stranded RNA-binding activity: identification of a repeated basic amino acid motif within the C-terminal binding region. J. Virol. 66, 5347–5356 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Liemann, S., Chandran, K., Baker, T. S., Nibert, M. L. & Harrison, S. C. Structure of the reovirus membrane-penetration protein, μ1, in a complex with its protector protein, σ3. Cell 108, 283–295 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature 352, 36–42 (1991).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Jané-Valbuena, J. et al. Reovirus virion-like particles obtained by recoating infectious subvirion particles with baculovirus-expressed σ3 protein: an approach for analyzing σ3 functions during virus entry. J. Virol. 73, 2963–2973 (1999).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Joachimiak, L. A., Walzthoeni, T., Liu, C. W., Aebersold, R. & Frydman, J. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 159, 1042–1055 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Georgescauld, F. et al. GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157, 922–934 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Tian, G. & Cowan, N. J. Tubulin-specific chaperones: components of a molecular machine that assembles the α/β heterodimer. Methods Cell Biol. 115, 155–171 (2013).

  41. 41.

    Plimpton, R. L. et al. Structures of the Gβ-CCT and PhLP1-Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly. Proc. Natl Acad. Sci. USA 112, 2413–2418 (2015).

  42. 42.

    Spiess, C., Miller, E. J., McClellan, A. J. & Frydman, J. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol. Cell 24, 25–37 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Leroux, M. R. & Hartl, F. U. Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr. Biol. 10, R260–R264 (2000).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Feldman, D. E., Spiess, C., Howard, D. E. & Frydman, J. Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol. Cell 12, 1213–1224 (2003).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Attoui, H. et al. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J. Gen. Virol. 83, 1941–1951 (2002).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Stins, M. F., Gilles, F. & Kim, K. S. Selective expression of adhesion molecules on human brain microvascular endothelial cells. J. Neuroimmunol. 76, 81–90 (1997).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Mainou, B. A. & Dermody, T. S. Transport to late endosomes is required for efficient reovirus infection. J. Virol. 86, 8346–8358 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Virgin, H. Wt, Bassel-Duby, R., Fields, B. N. & Tyler, K. L. Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J. Virol. 62, 4594–4604 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kobayashi, T. et al. A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1, 147–157 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Furlong, D. B., Nibert, M. L. & Fields, B. N. Sigma 1 protein of mammalian reoviruses extends from the surfaces of viral particles. J. Virol. 62, 246–256 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Parker, J. S., Broering, T. J., Kim, J., Higgins, D. E. & Nibert, M. L. Reovirus core protein μ2 determines the filamentous morphology of viral inclusion bodies by interacting with and stabilizing microtubules. J. Virol. 76, 4483–4496 (2002).

  52. 52.

    Mainou, B. A. et al. Reovirus cell entry requires functional microtubules. m Bio 4, e00405-13 (2013).

  53. 53.

    Becker, M. M. et al. Reovirus σNS protein is required for nucleation of viral assembly complexes and formation of viral inclusions. J. Virol. 75, 1459–1475 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Mainou, B. A. & Dermody, T. S. Src kinase mediates productive endocytic sorting of reovirus during cell entry. J. Virol. 85, 3203–3213 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Becker, M. M., Peters, T. R. & Dermody, T. S. Reovirus σNS and μNS proteins form cytoplasmic inclusion structures in the absence of viral infection. J. Virol. 77, 5948–5963 (2003).

  57. 57.

    Barton, E. S., Connolly, J. L., Forrest, J. C., Chappell, J. D. & Dermody, T. S. Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J. Biol. Chem. 276, 2200–2211 (2001).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Fontana, J., Lopez-Montero, N., Elliott, R. M., Fernandez, J. J. & Risco, C. The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell Microbiol. 10, 2012–2028 (2008).

    Article  PubMed  Google Scholar 

  59. 59.

    Hurbain, I. & Sachse, M. The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol. Cell 103, 405–420 (2011).

    Article  PubMed  Google Scholar 

  60. 60.

    Szklarczyk, D. et al. STRINGv10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Sourisseau, M. et al. Characterization of reemerging chikungunya virus. PLoS Pathog. 3, e89 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Public Health Service awards AI032539, AI122563, GM007347, UL1TR000445, and the Vanderbilt Lamb Center for Pediatric Research. The RNAi screen was performed in the Vanderbilt high-throughput screening facility, which is an institutionally supported core. Confocal images were captured in the cell imaging core at the Rangos Research Center at Children’s Hospital of Pittsburgh of UPMC. The authors thank P. Aravamudhan, J. Brown, B. Mainou, L. Silva, D. Sutherland and G. Taylor of the Dermody lab for essential discussions and critically editing the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Terence S. Dermody.

Ethics declarations

Author contributions

J.J.K. conceived, designed experiments and performed experiments, analysed data, contributed materials/analysis tools and wrote the paper. T.S.D. conceived and designed experiments, analysed the data and wrote the paper. I.F.C., A.W.A. and P.F.Z. conceived, designed experiments and performed experiments, and analysed data. J.A.B. conceived and designed experiments and performed experiments. D.R.G, J.F. and C.R. conceived and designed experiments, analysed data, and contributed materials/analysis tools. J.C.F. analysed data. All authors reviewed, critiqued and provided comments on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14 and Supplementary Tables 1–3.

Life Sciences Reporting Summary

Supplementary Dataset 1

Compiled RNA-interference screen raw data from three independent replicates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knowlton, J.J., Fernández de Castro, I., Ashbrook, A.W. et al. The TRiC chaperonin controls reovirus replication through outer-capsid folding. Nat Microbiol 3, 481–493 (2018). https://doi.org/10.1038/s41564-018-0122-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing