Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conditional toxicity and synergy drive diversity among antibacterial effectors

Abstract

Bacteria in polymicrobial habitats contend with a persistent barrage of competitors, often under rapidly changing environmental conditions1. The direct antagonism of competitor cells is thus an important bacterial survival strategy2. Towards this end, many bacterial species employ an arsenal of antimicrobial effectors with multiple activities; however, the benefits conferred by the simultaneous deployment of diverse toxins are unknown. Here we show that the multiple effectors delivered to competitor bacteria by the type VI secretion system (T6SS) of Pseudomonas aeruginosa display conditional efficacy and act synergistically. One of these effectors, Tse4, is most active in high-salinity environments and synergizes with effectors that degrade the cell wall or inactivate intracellular electron carriers. We find Tse4 synergizes with these disparate mechanisms by forming pores that disrupt the ΔΨ component of the proton motive force. Our results provide evidence that the concomitant delivery of a cocktail of effectors serves as a bet-hedging strategy to promote bacterial competitiveness in the face of unpredictable and variable environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diverse species of Gram-negative bacteria encode multiple T6SS effectors with distinct biochemical activities.
Fig. 2: PAEE reveals that environmental conditions influence the potency of T6SS effectors.
Fig. 3: Environmental conditions and effector activities influence synergy between T6SS effectors.
Fig. 4: A synergistic T6SS effector of previously unknown function introduces ion permeability.

Similar content being viewed by others

References

  1. Stubbendieck, R. M. & Straight, P. D. Multifaceted interfaces of bacterial competition. J. Bacteriol. 198, 2145–2155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hood, R. D., Peterson, S. B. & Mougous, J. D. From striking out to striking gold: discovering that type VI secretion targets bacteria. Cell Host Microbe 21, 286–289 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 29, 81–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA 104, 15508–15513 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alcoforado Diniz, J., Liu, Y. C. & Coulthurst, S. J. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell. Microbiol. 17, 1742–1751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Russell, A. B. et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496, 508–512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitney, J. C. et al. An interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163, 607–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Durand, E., Cambillau, C., Cascales, E. & Journet, L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol. 22, 498–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Fischbach, M. A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 14, 519–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Leroux, M. et al. Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc. Natl Acad. Sci. USA 109, 19804–19809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whitney, J. C. et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol. Microbiol. 92, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Casabona, M. G., Vandenbrouck, Y., Attree, I. & Coute, Y. Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 13, 2419–2423 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, S. et al. Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc. Natl Acad. Sci. USA 102, 14278–14283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoffman, J. F. & Laris, P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J. Physiol. 239, 519–552 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahon, M. J. pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv. Biosci. Biotechnol. 2, 132–137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rice, K. C. & Bayles, K. W. Death’s toolbox: examining the molecular components of bacterial programmed cell death. Mol. Microbiol 50, 729–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Hoang, T. T., Kutchma, A. J., Becher, A. & Schweizer, H. P. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43, 59–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kulasekara, B. R. et al. c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. eLife 2, e01402 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma, L. S., Hachani, A., Lin, J. S., Filloux, A. & Lai, E. M. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16, 94–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyata, S. T., Unterweger, D., Rudko, S. P. & Pukatzki, S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog. 9, e1003752 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Russell, A. B. et al. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11, 538–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Whitney, J. C. et al. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J. Biol. Chem. 288, 26616–26624 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 102, 8006–8011 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Silverman, J. M. et al. Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol. Microbiol. 82, 1277–1290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Raible for providing pHluorin2 DNA, D. Walker for pyocin S5, the UW Cystic Fibrosis Research Development Program for sequencing, A. Roehrich for ICP-OES training, Tamir Gonen, B. Krantz, K. Ghosal and D. Das for assistance with Tse4 biochemical analysis, T. Kinkel and D. Prunkard for flow cytometry protocol development and analysis, R. Siehnel for assistance with barcode sequences, S. Dove for critical reading of the manuscript, and members of the Mougous laboratory for helpful discussions. This work was funded by the NIH (R01-AI080609 to JDM) and the Defense Threat Reduction Agency (HDTRA1-13-1-0014 to J.D.M.). K.D.L. was supported by the UW Cellular and Molecular Biology Training Grant (T32GM007270), and J.D.M. holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund and is an HHMI Investigator.

Author information

Authors and Affiliations

Authors

Contributions

K.D.L., S.B.P., H.D.K. and J.D.M. designed the study. K.D.L., S.B.P., H.D.K, M.C.R., R.K. and J.D.M. performed experiments, and K.D.L., S.B.P., H.D.K., M.C.R. and J.D.M analysed data. K.D.L., S.B.P., and J.D.M. wrote the manuscript.

Corresponding author

Correspondence to Joseph D. Mougous.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5 and Supplementary Tables 1–4.

Life Sciences Reporting Summary

Supplementary Table 1

Effector repertoires of T6SS-containing Proteobacteria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaCourse, K.D., Peterson, S.B., Kulasekara, H.D. et al. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol 3, 440–446 (2018). https://doi.org/10.1038/s41564-018-0113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0113-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing