A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells

Published online:


Malaria parasites replicate within a parasitophorous vacuole in red blood cells (RBCs). Progeny merozoites egress upon rupture of first the parasitophorous vacuole membrane (PVM), then poration and rupture of the RBC membrane (RBCM). Egress is protease-dependent1, but none of the effector molecules that mediate membrane rupture have been identified and it is unknown how sequential rupture of the two membranes is controlled. Minutes before egress, the parasite serine protease SUB1 is discharged into the parasitophorous vacuole2,3,4,5,6 where it cleaves multiple substrates2,5,7,8,9 including SERA6, a putative cysteine protease10,11,12. Here, we show that Plasmodium falciparum parasites lacking SUB1 undergo none of the morphological transformations that precede egress and fail to rupture the PVM. In contrast, PVM rupture and RBCM poration occur normally in SERA6-null parasites but RBCM rupture does not occur. Complementation studies show that SERA6 is an enzyme that requires processing by SUB1 to function. RBCM rupture is associated with SERA6-dependent proteolytic cleavage within the actin-binding domain of the major RBC cytoskeletal protein β-spectrin. We conclude that SUB1 and SERA6 play distinct, essential roles in a coordinated proteolytic cascade that enables sequential rupture of the two bounding membranes and culminates in RBCM disruption through rapid, precise, SERA6-mediated disassembly of the RBC cytoskeleton.

  • Subscribe to Nature Microbiology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • Correction 06 March 2018

    In the version of this Letter originally published, Michele S. Y. Tan was incorrectly listed as Michele Y. S. Tan due to a technical error. This has now been amended in all online versions of the Letter.


  1. 1.

    Blackman, M. J. Malarial proteases and host cell egress: an ‘emerging’ cascade. Cell Microbiol. 10, 1925–1934 (2008).

  2. 2.

    Yeoh, S. et al. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131, 1072–1083 (2007).

  3. 3.

    Collins, C. R. et al. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog. 9, e1003344 (2013).

  4. 4.

    Withers-Martinez, C. et al. The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat. Commun. 5, 3726 (2014).

  5. 5.

    Das, S. et al. Processing of Plasmodium falciparum merozoite surface protein MSP1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell Host Microbe 18, 433–444 (2015).

  6. 6.

    Hale, V. et al. Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egress. Proc. Natl Acad. Sci. USA 114, 3439–3444 (2017).

  7. 7.

    Koussis, K. et al. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J. 28, 725–735 (2009).

  8. 8.

    Silmon de Monerri, N. C. et al. Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect. Immun. 79, 1086–1097 (2011).

  9. 9.

    Collins, C. R., Hackett, F., Atid, J., Tan, M. S. Y. & Blackman, M. J. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog. 13, e1006453 (2017).

  10. 10.

    Ruecker, A. et al. Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J. Biol. Chem. 287, 37949–37963 (2012).

  11. 11.

    Miller, S. K. et al. A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. J. Biol. Chem. 277, 47524–47532 (2002).

  12. 12.

    Thomas, J. A. et al. Development and application of a simple plaque assay for the human malaria parasite Plasmodium falciparum. PloS ONE 11, e0157873 (2016).

  13. 13.

    Glushakova, S., Yin, D., Li, T. & Zimmerberg, J. Membrane transformation during malaria parasite release from human red blood cells. Curr. Biol. 15, 1645–1650 (2005).

  14. 14.

    Glushakova, S. et al. New stages in the program of malaria parasite egress imaged in normal and sickle erythrocytes. Curr. Biol. 20, 1117–1121 (2010).

  15. 15.

    Wickham, M. E., Culvenor, J. G. & Cowman, A. F. Selective inhibition of a two-step egress of malaria parasites from the host erythrocyte. J. Biol. Chem. 278, 37658–37663 (2003).

  16. 16.

    Abkarian, M., Massiera, G., Berry, L., Roques, M. & Braun-Breton, C. A novel mechanism for egress of malarial parasites from red blood cells. Blood 117, 4118–4124 (2011).

  17. 17.

    Taylor, H. M. et al. The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony. Eukaryot. Cell 9, 37–45 (2010).

  18. 18.

    Glushakova, S., Mazar, J., Hohmann-Marriott, M. F., Hama, E. & Zimmerberg, J. Irreversible effect of cysteine protease inhibitors on the release of malaria parasites from infected erythrocytes. Cell Microbiol. 11, 95–105 (2009).

  19. 19.

    Collins, C. R. et al. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol. Microbiol. 88, 687–701 (2013).

  20. 20.

    Jones, M. L. et al. A versatile strategy for rapid conditional genome engineering using loxP sites in a small synthetic intron in Plasmodium falciparum. Sci. Rep. 6, 21800 (2016).

  21. 21.

    Ribacke, U. et al. Improved in vitro culture of Plasmodium falciparum permits establishment of clinical isolates with preserved multiplication, invasion and rosetting phenotypes. PloS ONE 8, e69781 (2013).

  22. 22.

    Wirth, C. C. et al. Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes. Cell Microbiol. 16, 709–733 (2014).

  23. 23.

    Simmons, D., Woollett, G., Bergin-Cartwright, M., Kay, D. & Scaife, J. A malaria protein exported into a new compartment within the host erythrocyte. EMBO J. 6, 485–491 (1987).

  24. 24.

    Lux, S. E. Anatomy of the red cell membrane skeleton: Unanswered questions. Blood 127, 187–199 (2016).

  25. 25.

    An, X. et al. Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: Regulation of the interactions by phosphatidylinositol-4,5-bisphosphate. Biochemistry 44, 10681–10688 (2005).

  26. 26.

    Karinch, A. M., Zimmer, W. E. & Goodman, S. R. The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J. Biol. Chem. 265, 11833–11840 (1990).

  27. 27.

    Deligianni, E. et al. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. Cell. Microbiol. 15, 1438–1455 (2013).

  28. 28.

    Burda, P. C. et al. A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane. PLoS Pathog. 11, e1004760 (2015).

  29. 29.

    Chandramohanadas, R. et al. Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 324, 794–797 (2009).

  30. 30.

    Baker, D. A. et al. A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nat. Commun. 8, 430 (2017).

  31. 31.

    Holder, A. A. & Freeman, R. R. Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and a monoclonal antibody. J. Exp. Med. 156, 1528–1538 (1982).

  32. 32.

    Withers-Martinez, C. et al. Expression of recombinant Plasmodium falciparum subtilisin-like protease-1 in insect cells: Characterization, comparison with the parasite protease, and homology modelling. J. Biol. Chem. 277, 29698–29709 (2002).

  33. 33.

    Collins, C. R., Withers-Martinez, C., Hackett, F. & Blackman, M. J. An inhibitory antibody blocks interactions between components of the malarial invasion machinery. PLoS Pathog. 5, e1000273 (2009).

  34. 34.

    Blackman, M. J. Purification of Plasmodium falciparum merozoites for analysis of the processing of merozoite surface protein-1. Methods Cell Biol. 45, 213–220 (1994).

  35. 35.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

  36. 36.

    Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

  37. 37.

    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

  38. 38.

    MacLean, B. et al. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

Download references


This work was supported by funding to M.J.B. from the Francis Crick Institute (https://www.crick.ac.uk/), which receives its core funding from Cancer Research UK (FC001043; https://www.cancerresearchuk.org), the UK Medical Research Council (FC001043; https://www.mrc.ac.uk/) and the Wellcome Trust (FC001043; https://wellcome.ac.uk/). J.A.T. and M.S.Y.T. were in receipt of Crick PhD studentships, and V.L.H. was supported by Gatan BBSRC CASE PhD studentship BB/F016948/1. The work was also supported by MRC project grants G1100013 and MR/P010288/1 (H.R.S., M.J.B. and R.A.F.), Wellcome equipment grants 101488, 079605 and 086018 (H.R.S., M.J.B. and R.A.F.) and Wellcome ISSF2 funding to the London School of Hygiene & Tropical Medicine.

Author information

Author notes

    • Victoria L. Hale

    Present address: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK

  1. These authors contributed equally: James A. Thomas and Michele S.Y. Tan.


  1. Malaria Biochemistry Laboratory, The Francis Crick Institute, London, UK

    • James A. Thomas
    • , Michele S. Y. Tan
    • , Fiona Hackett
    •  & Michael J. Blackman
  2. Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London, UK

    • Claudine Bisson
    • , Trishant R. Umrekar
    • , Victoria L. Hale
    •  & Helen R. Saibil
  3. Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, UK

    • Aaron Borg
    •  & Ambrosius P. Snijders
  4. Centre for Ultrastructural Imaging, Kings College London, London, UK

    • Gema Vizcay-Barrena
    •  & Roland A. Fleck
  5. Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK

    • Michael J. Blackman


  1. Search for James A. Thomas in:

  2. Search for Michele S. Y. Tan in:

  3. Search for Claudine Bisson in:

  4. Search for Aaron Borg in:

  5. Search for Trishant R. Umrekar in:

  6. Search for Fiona Hackett in:

  7. Search for Victoria L. Hale in:

  8. Search for Gema Vizcay-Barrena in:

  9. Search for Roland A. Fleck in:

  10. Search for Ambrosius P. Snijders in:

  11. Search for Helen R. Saibil in:

  12. Search for Michael J. Blackman in:


J.A.T. performed all P. falciparum genetic manipulations and phenotype analysis. M.S.Y.T. performed phenotype analysis and parasite manipulation. F.H. performed parasite manipulation. G.V.B. and R.A.F. performed SEM. C.B., T.R.U. and V.L.H. performed and interpreted TEM. A.B., M.S.Y.T. and B.S. performed and interpreted proteomic analysis. J.A.T., M.S.Y.T., B.S., H.R.S. and M.J.B. conceived the study, designed experiments, interpreted results and wrote the manuscript.

Corresponding author

Correspondence to Michael J. Blackman.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–16, Supplementary Table 1, Supplementary References.

  2. Life Sciences Reporting Summary


  1. Supplementary Video 1

    Composite DIC time-lapse video showing the different fates of control and RAP-treated (ΔSUB1) SUB1HA3:loxP schizonts following washing away of the PKG inhibitor C2 (elapsed time indicated). The ΔSUB1 parasites undergo none of the morphological changes associated with egress

  2. Supplementary Video 2

    Genetic complementation of the ΔSUB1 egress defect by a WT SUB1 transgene. Simultaneous DIC and fluorescence time-lapse video showing normal egress of RAP-treated (ΔSUB1) SUB1HA3:loxP schizonts harbouring a transgene expression construct for expression of the WT SUB1 gene and mCherry. Elapsed time following washing away of the PKG inhibitor C2 is indicated.

  3. Supplementary Video 3

    Composite DIC time-lapse video showing the different fates of control and RAP-treated (ΔSERA6) SERA6:loxP schizonts following washing away of the PKG inhibitor C2 (elapsed time indicated). While PVM rupture appears to take place normally in the ΔSERA6 parasites, rupture of the RBCM does not occur.

  4. Supplementary Video 4

    Genetic complementation of the ΔSERA6 egress defect by a WT SERA6 transgene. Simultaneous DIC and fluorescence time-lapse video showing normal egress of a RAP-treated (ΔSERA6) SERA6:loxP schizont harbouring a transgene expression construct for expression of the WT SERA6 gene and mCherry. Elapsed time following washing away of the PKG inhibitor C2 is indicated.

  5. Supplementary Video 5

    SUB1 is required for PVM rupture and all subsequent events leading to egress, whereas SERA6 is required for RBCM rupture but not PVM rupture or RBCM poration. Composite time-lapse video showing fates of control and RAP-treated SUB1HA3:loxP:EXP1mCherry and SERA6:loxP:EXP1mCherry schizonts labelled with fluorescent wheat germ agglutinin (WGA) and in the presence of fluorescent phalloidin. PVM rupture occurs in control and ΔSERA6 parasites, followed by RBCM poration as indicated by phalloidin-labelling of the RBC cytoskeleton. The RBCM then ruptures and vesiculates in control parasites. Indicated, elapsed time following washing away the PKG inhibitor C2.