Article | Published:

Pore-forming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome

Abstract

Recent studies highlight that bacterial pathogens can reprogram target cells by influencing epigenetic factors. The type III secretion system (T3SS) is a bacterial nanomachine that resembles a syringe on the bacterial surface. The T3SS ‘needle’ delivers translocon proteins into eukaryotic cell membranes, subsequently allowing injection of bacterial effectors into the cytosol. Here we show that Pseudomonas aeruginosa induces early T3SS-dependent dephosphorylation and deacetylation of histone H3 in eukaryotic cells. This is not triggered by any of the P. aeruginosa T3SS effectors, but results from the insertion of the PopB–PopD translocon into the membrane. This suggests that the P. aeruginosa translocon is a genuine T3SS effector acting as a pore-forming toxin. We visualized the translocon plugged into the host cell membrane after the bacterium has left the site of contact, and demonstrate that subsequent ion exchange through this pore is responsible for histone H3 modifications and host cell subversion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Stryjewski, M. & Sexton, D. in Severe Infections Caused by Pseudomonas aeruginosa: Perspectives on Critical Care Infectious Diseases (eds Hauser, A. R. & Rello, J.) 1–15 (Springer, New York, 2003).

  2. 2.

    Lund-Palau, H. et al. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev. Respir. Med. 10, 685–697 (2016).

  3. 3.

    Cornelis, G. R. The type III secretion injectisome. Nat. Rev. Microbiol. 4, 811–825 (2006).

  4. 4.

    Galan, J. E., Lara-Tejero, M., Marlovits, T. C. & Wagner, S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438 (2014).

  5. 5.

    Galle, M., Carpentier, I. & Beyaert, R. Structure and function of the type III secretion system of Pseudomonas aeruginosa. Curr. Protein Pept. Sci. 13, 831–842 (2012).

  6. 6.

    Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 24, 51–62 (2016).

  7. 7.

    Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 29, 81–93 (2016).

  8. 8.

    Sana, T. G. et al. Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. mBio 6, e00712 (2015).

  9. 9.

    Jiang, F. et al. The Pseudomonas aeruginosa type VI secretion PGAP1-like effector induces host autophagy by activating endoplasmic reticulum stress. Cell Rep. 16, 1502–1509 (2016).

  10. 10.

    Jiang, F., Waterfield, N. R., Yang, J., Yang, G. & Jin, Q. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15, 600–610 (2014).

  11. 11.

    Dean, P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol. Rev. 35, 1100–1125 (2011).

  12. 12.

    Bierne, H., Hamon, M. & Cossart, P. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2, a010272 (2012).

  13. 13.

    Baek, S. H. When signaling kinases meet histones and histone modifiers in the nucleus. Mol. Cell 42, 274–284 (2011).

  14. 14.

    Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

  15. 15.

    Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004).

  16. 16.

    Opitz, B. et al. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J. Immunol. 176, 484–490 (2006).

  17. 17.

    Schmeck, B. et al. Intracellular bacteria differentially regulated endothelial cytokine release by MAPK-dependent histone modification. J. Immunol. 175, 2843–2850 (2005).

  18. 18.

    Saccani, S., Pantano, S. & Natoli, G. p38-dependent marking of inflammatory genes for increased NF-κB recruitment. Nat. Immunol. 3, 69–75 (2002).

  19. 19.

    Schmeck, B. et al. Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression. J. Immunol. 181, 940–947 (2008).

  20. 20.

    Slevogt, H. et al. Moraxella catarrhalis induces inflammatory response of bronchial epithelial cells via MAPK and NF-κB activation and histone deacetylase activity reduction. Am. J. Physiol. Lung C. 290, 818–826 (2006).

  21. 21.

    Haller, D. et al. Transforming growth factor-β1 inhibits non-pathogenic Gram negative bacteria-induced NF-κB recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J. Biol. Chem. 278, 23851–23860 (2003).

  22. 22.

    Bardwell, A. J., Abdollahi, M. & Bardwell, L. Anthrax lethal factor-cleavage products of MAPK (mitogen-activated protein kinase) kinases exhibit reduced binding to their cognate MAPKs. Biochem. J. 378, 569–577 (2004).

  23. 23.

    Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat. Immunol. 8, 47–56 (2007).

  24. 24.

    Eskandarian, H. A. et al. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341, 1238858 (2013).

  25. 25.

    Hamon, M. A. et al. Histone modifications induced by a family of bacterial toxins. Proc. Natl Acad. Sci. USA 104, 13467–13472 (2007).

  26. 26.

    Hamon, M. A. & Cossart, P. K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins. Infect. Immun. 79, 2839–2846 (2011).

  27. 27.

    Elsen, S. et al. A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 15, 164–176 (2014).

  28. 28.

    Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754 (2004).

  29. 29.

    Moscoso, J. A., Mikkelsen, H., Heeb, S., Williams, P. & Filloux, A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ. Microbiol. 13, 3128–3138 (2011).

  30. 30.

    Feltman, H. et al. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147, 2659–2669 (2001).

  31. 31.

    Dacheux, D., Goure, J., Chabert, J., Usson, Y. & Attree, I. Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages. Mol. Microbiol. 40, 76–85 (2001).

  32. 32.

    Faudry, E., Vernier, G., Neumann, E., Forge, V. & Attree, I. Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa. Biochemistry 45, 8117–8123 (2006).

  33. 33.

    Romano, F. B. et al. Efficient isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes. Biochemistry 50, 7117–7131 (2011).

  34. 34.

    Romano, F. B. et al. Type 3 secretion translocators spontaneously assemble a hexadecameric transmembrane complex. J. Biol. Chem. 291, 6304–6315 (2016).

  35. 35.

    Schoehn, G. et al. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J. 22, 4957–4967 (2003).

  36. 36.

    Wager, B., Faudry, E., Wills, T., Attree, I. & Delcour, A. H. Current fluctuation analysis of the PopB and PopD translocon components of the Pseudomonas aeruginosa type III secretion system. Biophys. J. 104, 1445–1455 (2013).

  37. 37.

    Stavru, F., Bouillaud, F., Sartori, A., Ricquier, D. & Cossart, P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc. Natl Acad. Sci. USA 108, 3612–3617 (2011).

  38. 38.

    Cohen, P. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58, 453–508 (1989).

  39. 39.

    Hubbard, M. J. & Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172–177 (1993).

  40. 40.

    Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

  41. 41.

    Huang, W., Batra, S., Atkins, B. A., Mishra, V. & Mehta, K. D. Increases in intracellular calcium dephosphorylate histone H3 at serine 10 in human hepatoma cells: potential role of protein phosphatase 2A-protein kinase CβII complex. J. Cell Physiol. 205, 37–46 (2005).

  42. 42.

    Cohen, P., Klumpp, S. & Schelling, D. L. An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett. 250, 596–600 (1989).

  43. 43.

    Heitmueller, M., Billion, A., Dobrindt, U., Vilcinskas, A. & Mukherjee, K. Epigenetic mechanisms regulate innate immunity against uropathogenic and commensal-like Escherichia coli in the surrogate insect model Galleria mellonella. Infect. Immun. 85, e00336-17 (2017).

  44. 44.

    McCarthy, R. R. et al. Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion. Nat. Microbiol. 2, 17027 (2017).

  45. 45.

    Galle, M. et al. The Pseudomonas aeruginosa type III secretion system has an exotoxin S/T/Y independent pathogenic role during acute lung infection. PloS ONE 7, e41547 (2012).

  46. 46.

    Bandyopadhaya, A., Tsurumi, A., Maura, D., Jeffrey, K. L. & Rahme, L. G. A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming. Nat. Microbiol. 1, 16174 (2016).

  47. 47.

    Goure, J. et al. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect. Immun. 72, 4741–4750 (2004).

  48. 48.

    Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

  49. 49.

    Hilbi, H. et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895–32900 (1998).

  50. 50.

    Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999).

  51. 51.

    Shin, H. & Cornelis, G. R. Type III secretion translocation pores of Yersinia enterocolitica trigger maturation and release of pro-inflammatory IL-1β. Cell Microbiol. 9, 2893–2902 (2007).

  52. 52.

    Senerovic, L. et al. Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death Dis. 3, e384 (2012).

  53. 53.

    Vance, R. E., Rietsch, A. & Mekalanos, J. J. Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect. Immun. 73, 1706–1713 (2005).

  54. 54.

    Galle, M. et al. The Pseudomonas aeruginosa type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1β maturation. J. Cell Mol. Med. 12, 1767–1776 (2008).

  55. 55.

    Verove, J. et al. Injection of Pseudomonas aeruginosa Exo toxins into host cells can be modulated by host factors at the level of translocon assembly and/or activity. PloS One 7, e30488 (2012).

Download references

Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Skłodowska-Curie Actions) of the European Union’s Horizon 2020 under REA grant agreement no. 654909. This work was also supported by the French Cystic Fibrosis Foundation (Vaincre la Mucoviscidose RF20140501133), including a postdoctoral fellowship to C.L. We would like to thank L. Allsopp, T. Wood, K. Hui, S. Lory, M. Wolfgang and S. Jin for providing the P. aeruginosa mutants used in this study. We thank M. Ragno, E. Faudry and S. Bouillot (PB&RC Team, CNRS, Grenoble, France) for PopD purification and MAb selection and characterization (financed by the ANR project PRP1.4 T3SS), and I. Attrée for antibody project management and discussions.

Author information

L.D. and A.F. had full access to all of the data in the study, and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: L.D. and A.F. Acquisition, analysis or interpretation of data: L.D., C.L., A.D. and A.F. Drafting of the manuscript: L.D. and A.F. Critical revision of the manuscript for important intellectual content: L.D., C.L., A.D. and A.F.

Competing interests

The authors declare no competing financial interests.

Correspondence to Alain Filloux.

Supplementary information

Supplementary Information

Supplementary Figures 1–13.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: P. aeruginosa induces a T3SS-dependent Ser10H3 dephosphorylation.
Fig. 2: The PopB–PopD translocon induces dephosphorylation and deacetylation of histone H3.
Fig. 3: The PopB–PopD translocon is a pore-forming toxin triggering K+ efflux-dependent Ser10H3 dephosphorylation and disruption of the mitochondria network.
Fig. 4: The PopB–PopD translocon remains stably anchored in the cytoplasmic membrane of the infected cell to trigger K+ efflux.
Fig. 5: PopB–PopD-dependent Ser10H3 dephosphorylation is triggered by the PP1 phosphatase.