Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disulfide bond formation in prokaryotes

Abstract

Interest in protein disulfide bond formation has recently increased because of the prominent role of disulfide bonds in bacterial virulence and survival. The first discovered pathway that introduces disulfide bonds into cell envelope proteins consists of Escherichia coli enzymes DsbA and DsbB. Since its discovery, variations on the DsbAB pathway have been found in bacteria and archaea, probably reflecting specific requirements for survival in their ecological niches. One variation found amongst Actinobacteria and Cyanobacteria is the replacement of DsbB by a homologue of human vitamin K epoxide reductase. Many Gram-positive bacteria express enzymes involved in disulfide bond formation that are similar, but non-homologous, to DsbAB. While bacterial pathways promote disulfide bond formation in the bacterial cell envelope, some archaeal extremophiles express proteins with disulfide bonds both in the cytoplasm and in the extra-cytoplasmic space, possibly to stabilize proteins in the face of extreme conditions, such as growth at high temperatures. Here, we summarize the diversity of disulfide-bond-catalysing systems across prokaryotic lineages, discuss examples for understanding the biological basis of such systems, and present perspectives on how such systems are enabling advances in biomedical engineering and drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A ‘Tree of Life’ diagram showing the DsbAB, DsbA–VKOR and non-disulfide clades.
Fig. 2: DsbAB pathways mediating disulfide bond formation.
Fig. 3: DSB formation in Gram-positive bacteria.
Fig. 4: Cytoplasmic disulfide formation in Archaea.

Similar content being viewed by others

References

  1. Bardwell, J. C. A., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. LaMantia, M. & Lennarz, W. J. The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity. Cell 74, 899–908 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Frand, A. R. & Kaiser, C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell 1, 161–170 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Peek, J. A. & Taylor, R. K. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc. Natl Acad. Sci. USA 89, 6210–6214 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kadokura, H. & Beckwith, J. Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 138, 1164–1173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ren, B. et al. A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units. Nat. Struct. Biol. 5, 602–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Mallick, P., Boutz, D. R., Eisenberg, D. & Yeates, T. O. Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc. Natl Acad. Sci. USA 99, 9679–9684 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kadokura, H., Tian, H., Zander, T., Bardwell, J. C. A. & Beckwith, J. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303, 534–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hiniker, A. & Bardwell, J. C. A. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279, 12967–12973 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, J. & Kroll, J. S. DsbA: a protein-folding catalyst contributing to bacterial virulence. Microbes Infect. 1, 1221–1228 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Lasica, A. M. & Jagusztyn-Krynicka, E. K. The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol. Rev. 31, 626–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Heras, B. et al. DSB proteins and bacterial pathogenicity. Nat. Rev. Microbiol. 7, 215–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Dutton, R. J., Boyd, D., Berkmen, M. & Beckwith, J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl Acad. Sci. USA 105, 11933–11938 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sato, Y. & Inaba, K. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J. 279, 2262–2271 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Bardwell, J. C. et al. A pathway for disulfide bond formation in vivo. Proc. Natl Acad. Sci. USA 90, 1038–1042 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sevier, C. S. et al. The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases. Protein Sci. 14, 1630–1642 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bevans, C. G., Krettler, C., Reinhart, C., Watzka, M. & Oldenburg, J. Phylogeny of the vitamin K 2,3-epoxide reductase (VKOR) family and evolutionary relationship to the disulfide bond formation protein B (DsbB) family. Nutrients 7, 6224–6249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Inaba, K. et al. Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J. 28, 779–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, W. et al. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463, 507–512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bader, M., Muse, W., Ballou, D. P., Gassner, C. & Bardwell, J. C. A. Oxidative protein folding is driven by the electron transport system. Cell 98, 217–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Reedstrom, C. K. & Suttie, J. W. Comparative distribution, metabolism, and utilization of phylloquinone and menaquinone-9 in rat liver. P. Soc. Exp. Biol. Med. 209, 403–409 (1995).

    Article  CAS  Google Scholar 

  22. Kadokura, H. & Beckwith, J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid. Redox Sign 13, 1231–1246 (2010).

    Article  CAS  Google Scholar 

  23. Inaba, K. Structural basis of protein disulfide bond generation in the cell. Genes Cells 15, 935–943 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Denoncin, K. & Collet, J.-F. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid. Redox Sign 19, 63–71 (2012).

    Article  CAS  Google Scholar 

  25. Hatahet, F., Boyd, D. & Beckwith, J. Disulfide bond formation in prokaryotes: history, diversity and design. BBA-Proteins Proteom. 1844, 1402–1414 (2014).

    Article  CAS  Google Scholar 

  26. Dailey, F. E. & Berg, H. C. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc. Natl Acad. Sci. USA 90, 1043–1047 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Missiakas, D., Georgopoulos, C. & Raina, S. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc. Natl Acad. Sci. USA 90, 7084–7088 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kadokura, H., Katzen, F. & Beckwith, J. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Jander, G., Martin, N. L. & Beckwith, J. Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J. 13, 5121–5127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi, T. et al. Respiratory chain is required to maintain oxidized states of the DsbA–DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc. Natl Acad. Sci. USA 94, 11857–11862 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bader, M. W., Xie, T., Yu, C. A. & Bardwell, J. C. A. Disulfide bonds are generated by quinone reduction. J. Biol. Chem. 275, 26082–26088 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Berkmen, M., Boyd, D. & Beckwith, J. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J. Biol. Chem. 280, 11387–11394 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Missiakas, D., Georgopoulos, C. & Raina, S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 13, 2013–2020 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shevchik, V. E., Condemine, G. & Robert-Baudouy, J. Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J. 13, 2007–2012 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rietsch, A., Belin, D., Martin, N. & Beckwith, J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 13048–13053 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Missiakas, D., Schwager, F. & Raina, S. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J. 14, 3415–3424 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stewart, E. J., Katzen, F. & Beckwith, J. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 18, 5963–5971 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, D., Rao, C. V. & Slauch, J. M. The Salmonella SPI1 type three-secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J. Bacteriol. 190, 87–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Totsika, M., Heras, B., Wurpel, D. J. & Schembri, M. A. Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073. J. Bacteriol. 191, 3901–3908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kwon, A.-R. & Choi, E.-C. Role of disulfide bond of arylsulfate sulfotransferase in the catalytic activity. Arch. Pharm. Res. 28, 561–565 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Grimshaw, J. P. A. et al. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J. Mol. Biol. 380, 667–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lin, D., Kim, B. & Slauch, J. M. DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar Typhimurium. Microbiology 155, 4014–4024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miki, T., Okada, N. & Danbara, H. Two periplasmic bisulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J. Biol. Chem. 279, 34631–34642 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Ha, U., Wang, Y. & Jin, S. DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect. Immun. 71, 1590–1595 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, S. H., Park, S. Y., Heo, Y. J. & Cho, Y. H. Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect. Immun. 76, 4152–4162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lasica, A. M., Wyszynska, A., Szymanek, K., Majewski, P. & Jagusztyn-Krynicka, E. K. Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens. J. Appl. Genet. 51, 383–393 (2010).

  47. Grabowska, A. D. et al. Functional and bioinformatics analysis of two Campylobacter jejuni homologs of the thiol-disulfide oxidoreductase, DsbA. PLoS ONE 9, e106247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kpadeh, Z. Z., Day, S. R., Mills, B. W. & Hoffman, P. S. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization. Mol. Microbiol. 95, 1054–1069 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heras, B. et al. Structural and functional characterization of three DsbA paralogues from Salmonella enterica serovar typhimurium. J. Biol. Chem. 285, 18423–18432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arts, I. S. et al. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. mBio 4, e00912-13 (2013).

  51. Tinsley, C. R., Voulhoux, R., Beretti, J. L., Tommassen, J. & Nassif, X. Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili. J. Biol. Chem. 279, 27078–27087 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Sinha, S., Langford, P. R. & Kroll, J. S. Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology 150, 2993–3000 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Sinha, S., Ambur, O. H., Langford, P. R., Tønjum, T. & Kroll, J. S. Reduced DNA binding and uptake in the absence of DsbA1 and DsbA2 of Neisseria meningitidis due to inefficient folding of the outer-membrane secretin PilQ. Microbiology 154, 217–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Kpadeh, Z. Z. et al. Disulfide bond oxidoreductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity. J. Bacteriol. 195, 1825–1833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren, G., Champion, M. M. & Huntley, J. F. Identification of disulfide bond isomerase substrates reveals bacterial virulence factors. Mol. Microbiol. 94, 926–944 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qin, A. et al. FipB, an essential virulence factor of Francisella tularensis subsp. tularensis, has dual roles in disulfide bond formation. J. Bacteriol. 196, 3571–3581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arredondo, S. A., Chen, T. F., Riggs, A. F., Gilbert, H. F. & Georgious, G. Role of dimerization in the catalytic properties of the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem. 284, 23972–23979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jameson-Lee, M., Garduño, R. A. & Hoffman, P. S. DsbA2 (27kDa Com1-like protein) of Legionella pneumophila. catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol. Microbiol 80, 835–852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bocian-Ostrzycka, K. M., Grzeszczuk, M. J., Dziewit, L. & Jagusztyn-Krynicka, E. K. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front. Microbiol. 6, 570 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Raczko, A. M. et al. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151, 219–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Yoon, J. Y. et al. Structural and functional characterization of Helicobacter pylori. DsbG. FEBS Lett. 585, 3862–3867 (2011).

  62. Roszczenko, P., Radomska, K. A., Wywial, E., Collet, J. F. & Jagusztyn-Krynicka, E. K. A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. PLoS ONE 7, e46563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lester, J. et al. Characterization of Helicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production of Helicobacter cystein-rich protein HcpE. Mol. Microbiol. 96, 110–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Bocian-Ostrzycka, K. M. et al. Engineering of Helicobacter pylori dimeric oxidoreductase Dsbk (HP0231). Front. Microbiol. 7, 1158 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Landeta, C. et al. Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nat. Chem. Biol. 11, 292–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meehan, B. M., Landeta, C., Boyd, D. & Beckwith, J. The essential cell division protein FtsN contains a critical disulfide bond in a non-essential domain. Mol. Microbiol. 103, 413–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meehan, B. M., Landeta, C., Boyd, D. & Beckwith, J. The disulfide bond formation pathway is essential for anaerobic growth of Escherichia coli. J. Bacteriol. 199, e00120-17 (2017).

  68. Hizukuri, Y., Yakushi, T., Kawagishi, I. & Homma, M. Role of the intramolecular disulfide bond in FlgI, the flagellar P-ring component of Escherichia coli. J. Bacteriol. 188, 4190–4197 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dai, K., Xu, Y., Lutkenhaus, J. & Lutkenhaus, J. O. E. Topological characterization of the essential Escherichia coli cell division protein FtsN. J. Bacteriol. 178, 1328–1334 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bojkovic, J. et al. Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J. Bacteriol. 198, 731–741 (2016).

  71. Peterson, K. M. & Mekalanos, J. J. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun. 56, 2822–2829 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu, J., Webb, H. & Hirst, T. R. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol. Microbiol. 6, 1949–1958 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Pogliano, J., Lynch, A. S., Belin, D., Lin, E. C. & Beckwith, J. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev. 11, 1169–1182 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Grabowska, A. D. et al. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism. BMC Microbiol. 11, 166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bayan, N., Houssin, C., Chami, M. & Leblon, G. Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J. Biotechol. 104, 55–67 (2003).

    Article  CAS  Google Scholar 

  76. Matias, V. R. F. & Beveridge, T. J. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 188, 1011–1021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matias, V. R. F. & Beveridge, T. J. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56, 240–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Burkovski, A. & Burkovski, A. Cell envelope of Corynebacteria: structure and influence on pathogenicity. ISRN Microbiol. 2013, 935736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh, A. K., Bhattacharyya-Pakrasi, M. & Pakrasi, H. B. Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J. Biol. Chem. 283, 15762–15770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goodstadt, L. & Ponting, C. P. Vitamin K epoxide reductase: homology, active site and catalytic mechanism. Trends Biochem. Sci. 29, 289–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, X., Dutton, R. J., Beckwith, J. & Boyd, D. Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid. Redox Sign 14, 1413–1420 (2011).

    Article  CAS  Google Scholar 

  82. Premkumar, L. et al. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Acta Crystallogr. Sect. D 69, 1981–1994 (2013).

    Article  CAS  Google Scholar 

  83. Kurosu, M. & Begari, E. Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 15, 1531–1553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dutton, R. J. et al. Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc. Natl Acad. Sci. USA 107, 297–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Daniels, R. et al. Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J. Biol. Chem. 285, 3300–3309 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Patarroyo, M. A. et al. Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein. Biochem. Bioph. Res. Co. 372, 935–940 (2008).

  87. Chim, N., Harmston, C. A., Guzman, D. J. & Goulding, C. W. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. BMC Struct. Biol. 13, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goulding, C. W. et al. Gram-positive DsbE proteins function differently from gram-negative DsbE homologs: a structure to function analysis of DsbE from mycobacterium tuberculosis. J. Biol. Chem. 279, 3516–3524 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Chim, N. et al. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J. Mol. Biol. 396, 1211–1226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reardon-Robinson, M. E. et al. A disulfide bond-forming machine is linked to the sortase-mediated pilus assembly pathway in the Gram-positive bacterium Actinomyces oris. J. Biol. Chem. 290, 21393–21405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reardon-Robinson, M. E. & Ton-That, H. Disulfide-bond-forming pathways in Gram-positive bacteria. J. Bacteriol. 198, 746–754 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  93. Reardon-Robinson, M. E. et al. A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence. Mol. Microbiol. 98, 1037–1050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ishihara, T. et al. Cloning and characterization of the gene for a protein thiol-disulfide oxidoreductase in Bacillus brevis. J. Bacteriol. 177, 745–749 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bolhuis, A. Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J. Biol. Chem. 274, 24531–24538 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Crow, A. et al. Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. J. Biol. Chem. 284, 23719–23733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Meima, R. et al. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J. Biol. Chem. 277, 6994–7001 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Draskovic, I. & Dubnau, D. Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol. Microbiol. 55, 881–896 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Dorenbos, R. et al. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem. 277, 16682–16688 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Kouwen, T. R. H. M. et al. Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol. Microbiol. 64, 984–999 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Dumoulin, A., Grauschopf, U., Bischoff, M., Thöny-Meyer, L. & Berger-Bächi, B. Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity. Arch. Microbiol. 184, 117–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Heras, B. et al. Staphylococcus aureus DsbA does not have a destabilizing disulfide: a new paradigm for bacterial oxidative folding. J. Biol. Chem. 283, 4261–4271 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. van der Kooi-Pol, M. M. et al. Requirement of signal peptidase ComC and thiol-disulfide oxidoreductase DsbA for optimal cell surface display of pseudopilin ComGC in Staphylococcus aureus. Appl. Environ. Microb. 78, 7124–7127 (2012).

    Article  CAS  Google Scholar 

  104. Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R. & Stevens, R. C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 5, 898–902 (1998).

  105. Marvaud, J. C. et al. botr/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol. Microbiol. 29, 1009–1018 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Baker, M. D., Gendlina, I., Collins, C. M. & Acharya, K. R. Crystal structure of a dimeric form of streptococcal pyrogenic exotoxin A (SpeA1). Protein Sci. 13, 2285–2290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Davey, L., Ng, C. K. W., Halperin, S. A. & Lee, S. F. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii. J. Biol. Chem. 288, 16416–16429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davey, L., Cohen, A., Leblanc, J., Halperin, S. A. & Lee, S. F. The disulfide oxidoreductase SdbA is active in Streptococcus gordonii using a single C-terminal cysteine of the CXXC motif. Mol. Microbiol. 99, 236–253 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Chng, S. S. et al. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA. Mol. Microbiol. 85, 996–1006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Derman, A., Prinz, W. A., Belin, D. & Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Bessette, P. H., Aslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl Acad. Sci. USA 96, 13703–13708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hatahet, F. & Ruddock, L. W. Topological plasticity of enzymes involved in disulfide bond formation allows catalysis in either the periplasm or the cytoplasm. J. Mol. Biol. 425, 3268–3276 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Ladenstein, R. & Ren, B. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J. 273, 4170–4185 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Jorda, J. & Yeates, T. O. Widespread disulfide bonding in proteins from thermophilic archaea. Archaea 2011, 409156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beeby, M. et al. The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol. 3, 1549–1558 (2005).

    Article  CAS  Google Scholar 

  116. Ladenstein, R. & Ren, B. Reconsideration of an early dogma, saying ‘there is no evidence for disulfide bonds in proteins from archaea’. Extremophiles 12, 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Hibender, S., Landeta, C., Berkmen, M., Beckwith, J. & Boyd, D. Aeropyrum pernix membrane topology of protein VKOR promotes protein disulfide bond formation in two subcellular compartments. Microbiology 12, 1864–1879 (2017).

    Article  CAS  Google Scholar 

  118. Pedone, E., Ren, B., Ladenstein, R., Rossi, M. & Bartolucci, S. Fuctional properties of the protein disulfide oxidoreductase from the Archaeon: Pryococcus furioses. Eur. J. Biochem. 271, 3437–3448 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Pedone, E., Limauro, D., D’Alterio, R., Rossi, M. & Bartolucci, S. Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus. FEBS J. 273, 5407–5420 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. D’Ambrosio, K. et al. A novel member of the protein disulfide oxidoreductase family from Aeropyrum pernix K1: structure, function and electrostatics. J. Mol. Biol. 362, 743–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Alvarez, A. F., Rodriguez, C. & Georgellis, D. Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. J. Bacteriol. 195, 3054–3061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Maskos, K., Huber-Wunderlich, M. & Glockshuber, R. DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo. J. Mol. Biol. 325, 495–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Lobstein, J. et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11, 753 (2012).

    Article  CAS  Google Scholar 

  124. Robinson, M. et al. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat. Commun. 6, 8072 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Ritz, D., Lim, J., Reynolds, C. M., Poole, L. B. & Beckwith, J. Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Science 294, 158–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Davey, L., Halperin, S. A. & Lee, S. F. Thiol-disulfide exchange in Gram-positive Firmicutes. Trends Microbiol. 24, 902–915 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Fleury, Y. et al. Covalent structure, synthesis, and structure-function studies of Mesentericin Y 10537, a defensive peptide from Gram-positive Bacteria Leuconostoc mesenteroides. J. Biol. Chem. 271, 14421–14429 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Kawai, Y. et al. Primary amino acid and DNA sequences of gassericin T, a lactacin F-family bacteriocin produced by Lactobacillus gasseri SBT2055. Biosci. Biotech. Bioch. 64, 2201–2208 (2000).

    Article  CAS  Google Scholar 

  129. O’Shea, E. F. et al. Bactofencin A, a new type of cationic bacteriocin with unusual immunity. mBio 4, e00498-13 (2013).

  130. Oppegård, C., Fimland, G., Anonsen, J. H. & Nissen-Meyer, J. The pediocin PA-1 accessory protein ensures correct disulfide bond formation in the antimicrobial peptide pediocin PA-1. Biochemistry 54, 2967–2974 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Früh, V. et al. Application of fragment-based drug discovery to membrane proteins: identification of ligands of the integral membrane enzyme DsbB. Chem. Biol. 17, 881–891 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Duprez, W. et al. Virtual screening of peptide and peptidomimetic fragments targeted to inhibit bacterial dithiol oxidase DsbA. PLoS ONE 10, e0133805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Adams, L. A. et al. Application of fragment-based screening to the design of inhibitors of Escherichia coli DsbA. Angew. Chem. Int. Ed. 54, 2179–2184 (2015).

  134. Halili, M. A. et al. Small molecule inhibitors of disulfide bond formation by the bacterial DsbA–DsbB dual enzyme system. ACS Chem. Biol. 10, 957–964 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Mohanty, B. et al. Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1. PLoS ONE 12, e0173436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Smith, R. P., Paxman, J. J., Scanlon, M. J. & Heras, B. Targeting bacterial Dsb proteins for the development of anti-virulence agents. Molecules 21, 811 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  137. Duprez, W. et al. Peptide inhibitors of the Escherichia coli DsbA oxidative machinery essential for bacterial virulence. J. Med. Chem. 58, 577–587 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Landeta, C. et al. Inhibition of virulence-promoting disulfide bond formation enzyme DsbB is blocked by mutating residues in two distinct regions. J. Biol. Chem. 292, 6529–6541 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kang, H. J., Coulibaly, F., Clow, F., Proft, T. & Baker, E. N. Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. Science 318, 1625–1628 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Kang, H. J. & Baker, E. N. Structure and assembly of Gram-positive bacterial pili: unique covalent polymers. Curr. Opin. Struc. Biol. 22, 200–207 (2012).

    Article  CAS  Google Scholar 

  141. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Vincent-Sealy, L., Thomas, J. D., Commander, P. & Salmond, G. P. C. Secreted proteins. Microbiology 145, 1945–1958 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Kloek, aP., Brooks, D. M. & Kunkel, B. N. A dsbA mutant of Pseudomonas syringae exhibits reduced virulence and partial impairment of type III secretion. Mol. Plant Pathol. 1, 139–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Gonzalez, M. D., Lichtensteiger, C. A. & Vimr, E. R. Adaptation of signature-tagged mutagenesis to Escherichia coli K1 and the infant-rat model of invasive disease. FEMS Microbiol. Lett. 198, 125–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Herbert, Ma et al. Signature tagged mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb. Pathog. 33, 211–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Rosadini, C. V., Wong, S. M. S. & Akerley, B. J. The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis. Infect. Immun. 76, 1498–1508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sabarth, N., Hurwitz, R., Meyer, T. F. & Bumann, D. Multiparameter selection of Helicobacter pylori antigens identifies two novel antigens with high protective efficacy. Infect. Immun. 70, 6499–6503 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhong, Y. et al. Helicobacter pylori HP0231 influences bacterial virulence and is essential for gastric colonization. PLoS ONE 11, e0154643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Burall, L. S. et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922–2938 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Godlewska, R. et al. Helicobacter pylori protein oxidation influences the colonization process. Int. J. Med. Microbiol. 296, 321–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Jiang, B.-L. et al. DsbB is required for the pathogenesis process of Xanthomonas campestris pv. campestris. Mol. Plant Microbe In. 21, 1036–1045 (2008).

    Article  CAS  Google Scholar 

  152. Qin, A., Scott, D. W. & Mann, B. J. Francisella tularensis subsp. tularensis Schu S4 disulfide bond formation protein B, but not an RND-type efflux pump, is required for virulence. Infect. Immun. 76, 3086–3092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Qin, A., Scott, D. W., Thompson, J. A. & Mann, B. J. Identification of an essential Francisella tularensis subsp. tularensis virulence factor. Infect. Immun. 77, 152–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Straskova, A. et al. Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential DsbA substrate proteins. J. Proteome Res. 8, 5336–5346 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Schmidt, M. et al. Francisella tularensis subsp. holarctica DsbA homologue: a thioredoxin-like protein with chaperone function. Microbiol. 159, 2364–2374 (2013).

    Article  CAS  Google Scholar 

  156. Vilches, S., Jimenez, N., Merino, S. & Tomas, J. M. The Aeromonas DsbA mutation decreased their virulence by triggering type III secretion system but not flagella production. Microb. Pathog. 52, 130–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Ireland, P. M. et al. Disarming Burkholderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo. Antioxid. Redox Signal. 20, 606–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Debarbieux, L. & Beckwith, J. O. N. On the functional interchangeability, oxidant versus reductant, of members of the thioredoxin superfamily. J. Bacteriol. 182, 723–727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. McMahon, R. M., Premkumar, L. & Martin, J. L. Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitors. BBA-Proteins Proteom. 1844, 1391–1401 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institute of General Medical Sciences grants GMO41883 (to J.B. and D.B.) and by an industry research agreement with F. Hoffmann-La Roche Ltd. and F. Hoffmann-La Roche Inc. (to J.B. and D.B.). J.B. is an American Cancer Society Professor.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and J.B. wrote the manuscript. D.B. performed the bioinformatic analysis.

Corresponding author

Correspondence to Jon Beckwith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landeta, C., Boyd, D. & Beckwith, J. Disulfide bond formation in prokaryotes. Nat Microbiol 3, 270–280 (2018). https://doi.org/10.1038/s41564-017-0106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0106-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology