Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stability of the human faecal microbiome in a cohort of adult men

Abstract

Characterizing the stability of the gut microbiome is important to exploit it as a therapeutic target and diagnostic biomarker. We metagenomically and metatranscriptomically sequenced the faecal microbiomes of 308 participants in the Health Professionals Follow-Up Study. Participants provided four stool samples—one pair collected 24–72 h apart and a second pair ~6 months later. Within-person taxonomic and functional variation was consistently lower than between-person variation over time. In contrast, metatranscriptomic profiles were comparably variable within and between subjects due to higher within-subject longitudinal variation. Metagenomic instability accounted for ~74% of corresponding metatranscriptomic instability. The rest was probably attributable to sources such as regulation. Among the pathways that were differentially regulated, most were consistently over- or under-transcribed at each time point. Together, these results suggest that a single measurement of the faecal microbiome can provide long-term information regarding organismal composition and functional potential, but repeated or short-term measures may be necessary for dynamic features identified by metatranscriptomics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design.
Fig. 2: Inter-individual differences in organismal composition and functional potential appear to be preserved, unlike the more variable metatranscriptomes.
Fig. 3: Stability of individual species, genes and transcripts over 6 months is correlated with average baseline relative abundance and prevalence.
Fig. 4: Relating metagenomic and metatranscriptomic stability over time.
Fig. 5: Exploring the stability of gene expression.

Similar content being viewed by others

References

  1. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  Google Scholar 

  2. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  Google Scholar 

  3. Blumberg, R. & Powrie, F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 4, 137rv7 (2012).

    Article  Google Scholar 

  4. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article  Google Scholar 

  5. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 41, 1237439 (2013).

    Article  Google Scholar 

  6. Flores, G. E. et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 15, 531 (2014).

    Article  Google Scholar 

  7. Ding, T. & Schloss, P. D. Dynamics and associations of microbial community types across the human body. Nature 509, 357–360 (2014).

    Article  CAS  Google Scholar 

  8. Jeffery, I. B., Lynch, D. B. & O’Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182 (2016).

    Article  CAS  Google Scholar 

  9. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article  Google Scholar 

  10. Rajilić-Stojanović, M., Heilig, H. G. H. J., Tims, S., Zoetendal, E. G. & De Vos, W. M. Long-term monitoring of the human intestinal microbiota composition. Environ. Microbiol. 15, 1146–1159 (2013).

    Article  Google Scholar 

  11. Zoetendal, E. G., Akkermans, A. D. L. & De Vos, W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–3859 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  Google Scholar 

  13. Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl Acad. Sci. USA 112, E2930–E2938 (2015).

    Article  CAS  Google Scholar 

  14. Dubos, R. J. & Schaedler, R. W. Reversible changes in the susceptibility of mice to bacterial infections. J. Exp. Med. 104, 53–65 (1956).

    Article  CAS  Google Scholar 

  15. Schaedler, R. W. & Dubos, R. J. Reversible changes in the susceptibility of mice to bacterial infections. J. Exp. Med. 104, 67–84 (1956).

    Article  CAS  Google Scholar 

  16. Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 93, 45–50 (2013).

    Article  Google Scholar 

  17. Consortium, T. H. M. P. Structure, function and diversity of the healthy human microbiome. Nature 86, 207–214 (2012).

    Google Scholar 

  18. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  Google Scholar 

  19. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

    Article  CAS  Google Scholar 

  20. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  Google Scholar 

  21. Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–E2338 (2014).

    Article  CAS  Google Scholar 

  22. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  Google Scholar 

  23. McNulty, N. P. et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3, 106ra106 (2011).

    Article  Google Scholar 

  24. Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    Article  CAS  Google Scholar 

  25. Abu-Ali, G. S. et al. Metatranscriptome of human faecal microbial communities in a cohort of adult men Nat. Microbiol. https://doi.org/10.1038/s41561-017-0084-4 (2018).

  26. Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358 (2012).

    Article  CAS  Google Scholar 

  27. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    Article  CAS  Google Scholar 

  28. Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J. 11, 841–852 (2017).

    Article  Google Scholar 

  29. Mahony, J., McDonnell, B., Casey, E. & van Sinderen, D. Phage–host interactions of cheese-making lactic acid bacteria. Annu. Rev. Food Sci. Technol. 7, 267–285 (2016).

    Article  CAS  Google Scholar 

  30. Kim, D. H., Konishi, L. & Kobashi, K. Purification, characterization and reaction mechanism of novel arylsulfotransferase obtained from an anaerobic bacterium of human intestine. Biochim. Biophys. Acta 872, 33–41 (1986).

    Article  CAS  Google Scholar 

  31. Malojčić, G. et al. A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 105, 19217–19222 (2008).

    Article  Google Scholar 

  32. Hehemann, J.-H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    Article  CAS  Google Scholar 

  33. Jenkins, A. H., Schyns, G., Potot, S., Sun, G. & Begley, T. P. A new thiamin salvage pathway. Nat. Chem. Biol. 3, 492–497 (2007).

    Article  CAS  Google Scholar 

  34. Bussiere, D. E. et al. Crystal structure of ErmC’, an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37, 7103–7112 (1998).

    Article  CAS  Google Scholar 

  35. Jalanka, J. et al. Effects of bowel cleansing on the intestinal microbiota. Gut 64, 1562–1568 (2015).

    Article  Google Scholar 

  36. O’Brien, C. L., Allison, G. E., Grimpen, F. & Pavli, P. Impact of colonoscopy bowel preparation on intestinal microbiota. PLoS ONE 8, e62815 (2013).

    Article  Google Scholar 

  37. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

    Article  CAS  Google Scholar 

  38. Jakobsson, H. E. et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 5, e9836 (2010).

    Article  Google Scholar 

  39. McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    Article  CAS  Google Scholar 

  40. Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).

    Article  CAS  Google Scholar 

  41. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  Google Scholar 

  42. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article  Google Scholar 

  43. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  Google Scholar 

  44. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  Google Scholar 

  45. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  Google Scholar 

  46. Lewis, S. J. & Heaton, K. W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 32, 920–924 (1997).

    Article  CAS  Google Scholar 

  47. Shishkin, A. A. et al. Simultaneous generation of many RNA-Seq libraries in a single reaction. Nat. Methods 12, 323–325 (2015).

    Article  CAS  Google Scholar 

  48. Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants who graciously participated in this research, K. Stewart and G. Gupta at the Massachusetts General Hospital (MGH) who assisted with recruitment for the study, and S. Sawyer (Brigham and Women’s Hospital), M. Atar (MGH), C. Dulong (MGH and the Harvard T. H. Chan School of Public Health) and T. Poon (Broad Institut) for their assistance with project logistics, sample handling, nucleic acid extractions and sequencing. This work was supported by National Institutes of Health grants U54DE023798, UM1 CA167552, U01CA152904, R01 HL35464, R01CA202704 and K24DK098311, as well as by the Starr Cancer Consortium. A.T.C. was in part supported by the Stuart and Suzanne Steele MGH Research Scholars Program. J.I. was in part supported by the Nebraska Tobacco Settlement Biomedical Research Development Fund. R.S.M. was supported by a Howard Hughes Medical Institute Medical Research Fellowship and an AGA–Eli and Edythe Broad Student Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.I., A.T.C. and C.H. designed and managed the study. R.S.M., D.A.D., K.L.I., G.T.B., C.D., E.B.R. and J.I. collected the samples and generated the data. R.S.M., G.S.A.-A., D.A.D., J.L.-P., A.S., P.L., A.D.J., H.K., G.T.B., M.S., L.H.N. and H.M. analysed the data. R.S.M., G.S.A.-A., D.A.D., K.L.I., J.I., C.H. and A.T.C. prepared and wrote the manuscript.

Corresponding authors

Correspondence to Curtis Huttenhower or Andrew T. Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figure 1, Supplementary Table 1, Supplementary References.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, R.S., Abu-Ali, G.S., Drew, D.A. et al. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol 3, 347–355 (2018). https://doi.org/10.1038/s41564-017-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0096-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing