Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A pathway for biological methane production using bacterial iron-only nitrogenase

Abstract

Methane (CH4) is a potent greenhouse gas that is released from fossil fuels and is also produced by microbial activity, with at least one billion tonnes of CH4 being formed and consumed by microorganisms in a single year1. Complex methanogenesis pathways used by archaea are the main route for bioconversion of carbon dioxide (CO2) to CH4 in nature2,3,4. Here, we report that wild-type iron-iron (Fe-only) nitrogenase from the bacterium Rhodopseudomonas palustris reduces CO2 simultaneously with nitrogen gas (N2) and protons to yield CH4, ammonia (NH3) and hydrogen gas (H2) in a single enzymatic step. The amount of CH4 produced by purified Fe-only nitrogenase was low compared to its other products, but CH4 production by this enzyme in R. palustris was sufficient to support the growth of an obligate CH4-utilizing Methylomonas strain when the two microorganisms were grown in co-culture, with oxygen (O2) added at intervals. Other nitrogen-fixing bacteria that we tested also formed CH4 when expressing Fe-only nitrogenase, suggesting that this is a general property of this enzyme. The genomes of 9% of diverse nitrogen-fixing microorganisms from a range of environments encode Fe-only nitrogenase. Our data suggest that active Fe-only nitrogenase, present in diverse microorganisms, contributes CH4 that could shape microbial community interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cells expressing wild-type Fe-only nitrogenase produce CH4
Fig. 2: Fe-only nitrogenase purified from R. palustris reduces CO2 to CH4 in vitro
Fig. 3: Effect of molybdenum on CH4 production by nitrogen-fixing bacteria.
Fig. 4: Co-culture of Methylomonas sp. LW13 and R. palustris

Similar content being viewed by others

References

  1. Thauer, R. K. & Shima, S. Biogeochemistry: methane and microbes. Nature 440, 878–879 (2006).

    Article  CAS  Google Scholar 

  2. Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    Article  CAS  Google Scholar 

  3. Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    Article  CAS  Google Scholar 

  4. Brauer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194 (2006).

    Article  Google Scholar 

  5. Ferry, J. G. Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass. Curr. Opin. Biotech. 22, 351–357 (2011).

    Article  CAS  Google Scholar 

  6. Metcalf, W. W. et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337, 1104–1107 (2012).

    Article  CAS  Google Scholar 

  7. Schauder, R., Eikmanns, B., Thauer, R. K., Widdel, F. & Fuchs, G. Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145, 162–172 (1986).

    Article  CAS  Google Scholar 

  8. Vorholt, J., Kunow, J., Stetter, K. O. & Thauer, R. K. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163, 112–118 (1995).

    Article  CAS  Google Scholar 

  9. Spatzal, T. The center of biological nitrogen fixation: FeMo-cofactor. Z. Anorg. Allg. Chem. 641, 10–17 (2015).

    Article  CAS  Google Scholar 

  10. Eady, R. R. Structure-function relationships of alternative nitrogenases. Chem. Rev. 96, 3013–3030 (1996).

    Article  CAS  Google Scholar 

  11. Bishop, P. E. & Joerger, R. D. Genetics and molecular biology of alternative nitrogen fixation systems. Annu. Rev. Plant Phys. 41, 109–125 (1990).

    Article  CAS  Google Scholar 

  12. Helz, G. R. et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–3642 (1996).

    Article  CAS  Google Scholar 

  13. Barron, A. R. et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat. Geosci. 2, 42–45 (2009).

    Article  CAS  Google Scholar 

  14. Zhang, X. et al. Alternative nitrogenase activity in the environment and nitrogen cycle implications. Biogeochemistry 127, 189–198 (2016).

    Article  CAS  Google Scholar 

  15. McRose, D. L., Zhang, X., Kraepiel, A. M. & Morel, F. M. Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Front. Microbiol. 8, 267 (2017).

    Article  Google Scholar 

  16. Seefeldt, L. C., Yang, Z.-Y., Duval, S. & Dean, D. R. Nitrogenase reduction of carbon-containing compounds. Biochim. Biophys. Acta 1827, 1102–1111 (2013).

    Article  CAS  Google Scholar 

  17. Lee, C. C. et al. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase. Proc. Natl Acad. Sci. USA 112, 13845–13849 (2015).

    Article  CAS  Google Scholar 

  18. Lee, C. C., Hu, Y. & Ribbe, M. W. Vanadium nitrogenase reduces CO. Science 329, 642 (2010).

    Article  CAS  Google Scholar 

  19. Hu, Y., Lee, C. C. & Ribbe, M. W. Extending the carbon chain: hydrocarbon formation catalyzed by vanadium/molybdenum nitrogenases. Science 333, 753–755 (2011).

    Article  CAS  Google Scholar 

  20. Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Molybdenum nitrogenase catalyzes the reduction and coupling of CO to form hydrocarbons. J. Biol. Chem. 286, 19417–19421 (2011).

    Article  CAS  Google Scholar 

  21. Yang, Z.-Y., Moure, V. R., Dean, D. R. & Seefeldt, L. C. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc. Natl Acad. Sci. USA 109, 19644–19648 (2012).

    Article  CAS  Google Scholar 

  22. Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    Article  CAS  Google Scholar 

  23. Fixen, K. R. et al. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc. Natl Acad. Sci. USA 113, 10163–10167 (2016).

    Article  CAS  Google Scholar 

  24. Oda, Y. et al. Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J. Bacteriol. 187, 7784–7794 (2005).

    Article  CAS  Google Scholar 

  25. McKinlay, J. B. & Harwood, C. S. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc. Natl Acad. Sci. USA 107, 11669–11675 (2010).

    Article  CAS  Google Scholar 

  26. Masepohl, B. & Hallenbeck, P. C. Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. Adv. Exp. Med. Biol. 675, 49–70 (2010).

    Article  CAS  Google Scholar 

  27. Waugh, S. I. et al. The genes encoding the delta subunits of dinitrogenases 2 and 3 are required for Mo-independent diazotrophic growth by Azotobacter vinelandii. J. Bacteriol. 177, 1505–1510 (1995).

    Article  CAS  Google Scholar 

  28. Lehman, L. J. & Roberts, G. P. Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J. Bacteriol. 173, 5705–5711 (1991).

    Article  CAS  Google Scholar 

  29. Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol. Monogr. 86, 146–171 (2016).

    Article  Google Scholar 

  30. Auman, A. J., Stolyar, S., Costello, A. M. & Lidstrom, M. E. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl. Environ. Microbiol. 66, 5259–5266 (2000).

    Article  CAS  Google Scholar 

  31. Kim, M. K. & Harwood, C. S. Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol. Lett. 83, 199–203 (1991).

    CAS  Google Scholar 

  32. Huang, J. J., Heiniger, E. K., McKinlay, J. B. & Harwood, C. S. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl. Environ. Microbiol. 76, 7717–7722 (2010).

    Article  CAS  Google Scholar 

  33. Toukdarian, A. & Kennedy, C. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J. 5, 399–407 (1986).

    Article  CAS  Google Scholar 

  34. Rey, F. E., Heiniger, E. K. & Harwood, C. S. Redirection of metabolism for biological hydrogen production. Appl. Environ. Microbiol. 73, 1665–1671 (2007).

    Article  CAS  Google Scholar 

  35. Robinson, A. C., Burgess, B. K. & Dean, D. R. Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene cluster. J. Bacteriol. 166, 180–186 (1986).

    Article  CAS  Google Scholar 

  36. Bishop, P. E., Jarlenski, D. M. L. & Hetherington, D. R. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl Acad. Sci. USA 77, 7342–7346 (1980).

    Article  CAS  Google Scholar 

  37. Premakumar, R., Jacobitz, S., Ricke, S. C. & Bishop, P. E. Phenotypic characterization of a tungsten-tolerant mutant of Azotobacter vinelandii. J. Bacteriol. 178, 691–696 (1996).

    Article  CAS  Google Scholar 

  38. Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C. & Dean, D. R. Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37, 12611–12623 (1998).

    Article  CAS  Google Scholar 

  39. Peters, J. W., Fisher, K. & Dean, D. R. Identification of a nitrogenase protein-protein interaction site defined by residues 59 through 67 within the Azotobacter vinelandii Fe protein. J. Biol. Chem. 269, 28076–28083 (1994).

    CAS  PubMed  Google Scholar 

  40. Corbin, J. L. Liquid chromatographic-fluorescence determination of ammonia from nitrogenase reactions: a 2-min assay. Appl. Environ. Microbiol. 47, 1027–1030 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Barney, B. M., Igarashi, R. Y., Dos Santos, P. C., Dean, D. R. & Seefeldt, L. C. Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. J. Biol. Chem. 279, 53621–53624 (2004).

    Article  CAS  Google Scholar 

  42. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61, 205–218 (1970).

    Article  CAS  Google Scholar 

  43. Yu, Z., Krause, S. M. B., Beck, D. A. C. & Chistoserdova, L. A synthetic ecology perspective: how well does behavior of model organisms in the laboratory predict microbial activities in natural habitats? Front. Microbiol. 7, 946 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Fu, Y., Beck, D. A. C. & Lidstrom, M. E. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1. BMC Microbiol. 16, 156 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the entire Biological Electron Transfer and Catalysis (BETCy) team for informative discussions. We also thank G. Roberts, Y. Zhang, J. McKinlay and F. Daldal for the generous gifts of R. rubrum and R. capsulatus strains, S. Shaw for assistance with activity assays and M. Tokmina-Lukaszewska for the verification of purified Fe-only nitrogenase by mass spectrometry. This work was supported as part of the BETCy Energy Frontier Research Center (EFRC), an EFRC funded by the US Department of Energy, Office of Science Grant DE-SC0012518.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., D.F.H., Z.Y, K.R.F., E.S.B., M.E.L., L.C.S. and C.S.H. designed the research. Y.Z. performed the in vivo studies of photosynthetic bacteria. Y.Z. and K.R.F. made the R. palustris mutants. Y.Z. grew the R. palustris cells. D.F.H. purified the Fe-only nitrogenase and did the enzyme assays. Z.Y. and Y.F. performed the co-culture experiments. Y.F. carried out the analysis of 13C-labeled metabolites. S.P. completed the taxonomic distribution of nitrogenases; R.N.L. performed the CH4 measurement of A. vinelandii. Z.-Y.Y. performed the GC–MS analysis of CH4. Y.Z., D.F.H., K.R.F., E.S.B., M.E.L., L.C.S. and C.S.H. analysed the data. Y.Z., E.S.B., M.E.L., L.C.S. and C.S.H. wrote the paper. All authors contributed to the revision of the manuscript.

Corresponding author

Correspondence to Caroline S. Harwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1 and 2.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Harris, D.F., Yu, Z. et al. A pathway for biological methane production using bacterial iron-only nitrogenase. Nat Microbiol 3, 281–286 (2018). https://doi.org/10.1038/s41564-017-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0091-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology