Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Archaeal cells share common size control with bacteria despite noisier growth and division

Abstract

In nature, microorganisms exhibit different volumes spanning six orders of magnitude1. Despite their capability to create different sizes, a clonal population in a given environment maintains a uniform size across individual cells. Recent studies in eukaryotic and bacterial organisms showed that this homogeneity in cell size can be accomplished by growing a constant size between two cell cycle events (that is, the adder model2,3,4,5,6). Demonstration of the adder model led to the hypothesis that this phenomenon is a consequence of convergent evolution. Given that archaeal cells share characteristics with both bacteria and eukaryotes, we investigated whether and how archaeal cells exhibit control over cell size. To this end, we developed a soft-lithography method of growing the archaeal cells to enable quantitative time-lapse imaging and single-cell analysis, which would be useful for other microorganisms. Using this method, we demonstrated that Halobacteriumsalinarum, a hypersaline-adapted archaeal organism, grows exponentially at the single-cell level and maintains a narrow-size distribution by adding a constant length between cell division events. Interestingly, the archaeal cells exhibited greater variability in cell division placement and exponential growth rate across individual cells in a population relative to those observed in Escherichiacoli 6,7,8,9. Here, we present a theoretical framework that explains how these larger fluctuations in archaeal cell cycle events contribute to cell size variability and control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: H. salinarum cells grow exponentially, and their lengths at birth and division are narrowly distributed.
Fig. 2: H. salinarum cells effectively add a constant length between generations, consistent with the adder model.
Fig. 3: Distributions of division ratio and exponential growth rate of H. salinarum cells are broader than those of E. coli.
Fig. 4: Noise in interdivision time, division placement and exponential growth rate significantly affect the archaeal cell size distribution.

Similar content being viewed by others

References

  1. Deforet, M., van Ditmarsch, D. & Xavier, J. B. Cell-size homeostasis and the incremental rule in a bacterial pathogen. Biophys. J. 109, 521–528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soifer, I., Robert, L. & Amir, A. Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy. Curr. Biol. 26, 356–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Sauls, J. T., Li, D. & Jun, S. Adder and a coarse-grained approach to cell size homeostasis in bacteria. Curr. Opin. Cell Biol. 38, 38–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amir, A. Cell size regulation in bacteria. Phys. Rev. Lett. 112, 208102 (2014).

    Article  Google Scholar 

  5. Campos, M. et al. A constant size extension drives bacterial cell size homeostasis. Cell 159, 1433–1446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7, 387–390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guberman, J. M., Fay, A., Dworkin, J., Wingreen, N. S. & Gitai, Z. PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution. PLoS Comput. Biol. 4, e1000233 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fievet, A. et al. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough. Front. Microbiol. 6, 1378 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Iyer-Biswas, S. et al. Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl Acad. Sci. USA 111, 15912–15917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Banerjee, S. et al. Biphasic growth dynamics control cell division in Caulobacter crescentus. Nat. Microbiol. 2, 17116 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Nobs, J. B., Maerkl, S. J. & Polymenis, M. Long-term single cell analysis of S. pombe on a microfluidic microchemostat array. PLoS ONE 9, e93466 (2014).

  15. Hawkins, M., Malla, S., Blythe, M. J., Nieduszynski, C. A. & Allers, T. Accelerated growth in the absence of DNA replication origins. Nature 503, 544–547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herrmann, U. & Soppa, J. Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. Mol. Microbiol. 46, 395–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kelman, L. M. & Kelman, Z. Archaeal DNA replication. Annu. Rev. Genet. 48, 71–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Lindås, A.-C. & Bernander, R. The cell cycle of archaea. Nat. Rev. Microbiol. 11, 627–638 (2013).

    Article  PubMed  Google Scholar 

  20. Popławski, A. & Bernander, R. Nucleoid structure and distribution in thermophilic archaea. J. Bacteriol. 179, 7625–7630 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lundgren, M. & Bernander, R. Genome-wide transcription map of an archaeal cell cycle. Proc. Natl Acad. Sci. USA 104, 2939–2944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Amir, A. Is cell size a spandrel? eLife 6, e22186 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ghusinga, K. R., Vargas-Garcia, C. A. & Singh, A. A mechanistic stochastic framework for regulating bacterial cell division. Sci. Rep. 6, 30229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Osella, M., Nugent, E. & Cosentino Lagomarsino, M. Concerted control of Escherichia coli cell division. Proc. Natl Acad. Sci. USA 111, 3431–3435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kennard, A. S. et al. Individuality and universality in the growth-division laws of single E. coli cells. Phys. Rev. E 93, 012408 (2016).

    Article  PubMed  Google Scholar 

  27. Rego, E. H., Audette, R. E. & Rubin, E. J. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546, 153–157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, H. et al. Interrogating the Escherichia coli cell cycle by cell dimension perturbations. Proc. Natl Acad. Sci. USA 113, 15000–15005 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho, P.-Y. & Amir, A. Simultaneous regulation of cell size and chromosome replication in bacteria. Front. Microbiol. 6, 662 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ursell, T. S. et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc. Natl Acad. Sci. USA 111, E1025–E1034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Renner, L. D., Eswaramoorthy, P., Ramamurthi, K. S. & Weibel, D. B. Studying biomolecule localization by engineering bacterial cell wall curvature. PLoS ONE 8, e84143 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Paintdakhi, A. et al. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol. Microbiol. 99, 767–777 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Sliusarenko, O., Heinritz, J., Emonet, T. & Jacobs-Wagner, C. High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol. Microbiol. 80, 612–627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wallden, M., Fange, D., Lundius, E. G., Baltekin, Ö. & Elf, J. The synchronization of replication and division cycles in individual E. coli cells. Cell 166, 729–739 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Ursell for Morphometrics, D. B. Weibel for providing a fabrication facility, and K. A. Dulmage, M. Kapoor and W. Marshall for stimulating discussions. This work was supported by a Searle Scholars Award and NIH grant DP2AI117923-01 to E.C.G.; a HHMI Helen Hay Whitney Foundation Fellowship to Y.J.E.; the Harvard MRSEC program of the NSF DMR 14-20570 to P.H.; an A. P. Sloan Foundation grant and a Kavli Foundation grant to A.A.; and an NSF grant MCB-141-7750 and Duke Arts and Sciences Research Council Committee on Faculty Research grant to A.K.S., A.A., L.D.R. and E.C.G. also acknowledge support from the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.-J.E., A.S., E.G. and A.A. conceived and designed the experiments. Y.-J.E., M.K., L.D.R. and S.L. performed the experiments. Y.-J.E., P.-Y.H., L.R. and A.A. analysed the data. Y.-J.E., P.-Y.H. and A.A. developed and evaluated the theoretical framework. Y.-J.E., P.-Y.H., L.D.R., L.R., A.S., E.G. and A.A. wrote the manuscript.

Corresponding authors

Correspondence to Amy Schmid, Ethan Garner or Ariel Amir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–9, Supplementary Notes.

Life Sciences Reporting Summary

Videos

Supplementary Video 1

Halobacterium salinarum growth time-lapse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eun, YJ., Ho, PY., Kim, M. et al. Archaeal cells share common size control with bacteria despite noisier growth and division. Nat Microbiol 3, 148–154 (2018). https://doi.org/10.1038/s41564-017-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0082-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing