Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host

Abstract

Vibrio cholerae colonizes the human terminal ileum to cause cholera, and the arthropod intestine and exoskeleton to persist in the aquatic environment. Attachment to these surfaces is regulated by the bacterial quorum-sensing signal transduction cascade, which allows bacteria to assess the density of microbial neighbours. Intestinal colonization with V. cholerae results in expenditure of host lipid stores in the model arthropod Drosophila melanogaster. Here we report that activation of quorum sensing in the Drosophila intestine retards this process by repressing V. cholerae succinate uptake. Increased host access to intestinal succinate mitigates infection-induced lipid wasting to extend survival of V. cholerae-infected flies. Therefore, quorum sensing promotes a more favourable interaction between V. cholerae and an arthropod host by reducing the nutritional burden of intestinal colonization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: V. cholerae high-cell-density quorum-sensing-dependent signalling is activated in the Drosophila intestine and promotes host survival of infection.
Fig. 2: V. cholerae quorum sensing promotes host survival independent of biofilm formation.
Fig. 3: V. cholerae quorum sensing and succinate supplementation prevent host lipolysis.
Fig. 4: Dilp6 knockdown inhibits host infection-induced lipolysis and prolongs host survival.

References

  1. 1.

    Hawver, L. A., Giulietti, J. M., Baleja, J. D. & Ng, W. L. Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability. mBio 7, e01863-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Studer, S. V., Mandel, M. J. & Ruby, E. G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190, 5915–5923 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hassett, D. J. et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34, 1082–1093 (1999).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Vuong, C., Gerke, C., Somerville, G. A., Fischer, E. R. & Otto, M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J. Infect. Dis. 188, 706–718 (2003).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ansaldi, M. & Dubnau, D. Diversifying selection at the Bacillus quorum-sensing locus and determinants of modification specificity during synthesis of the ComX pheromone. J. Bacteriol. 186, 15–21 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cheng, Q., Campbell, E. A., Naughton, A. M., Johnson, S. & Masure, H. R. The com locus controls genetic transformation in Streptococcus pneumoniae. Mol. Microbiol. 23, 683–692 (1997).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Suckow, G., Seitz, P. & Blokesch, M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 193, 4914–4924 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Miyashiro, T. & Ruby, E. G. Shedding light on bioluminescence regulation in Vibrio fischeri. Mol. Microbiol. 84, 795–806 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. C. S. H. Perspect. Med. 2, a012427 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zhu, J. & Mekalanos, J. J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5, 647–656 (2003).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Lo Scrudato, M. & Blokesch, M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet. 8, e1002778 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Neale, G., Gompertz, D., Schonsby, H., Tabaqchali, S. & Booth, C. C. The metabolic and nutritional consequences of bacterial overgrowth in the small intestine. Am. J. Clin. Nutr. 25, 1409–1417 (1972).

    CAS  PubMed  Google Scholar 

  14. 14.

    Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl Acad. Sci. USA 84, 2833–2837 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Mekalanos, J. J., Collier, R. J. & Romig, W. R. Simple method for purifying choleragenoid, the natural toxoid of Vibrio cholerae. Infect. Immun. 16, 789–795 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Finkelstein, R. A. & LoSpalluto, J. J. Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J. Exp. Med. 130, 185–202 (1969).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    de Magny, G. C. et al. Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Appl. Environ. Microbiol. 77, 6125–6132 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Broza, M., Gancz, H., Halpern, M. & Kashi, Y. Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ. Microbiol. 7, 576–585 (2005).

    Article  PubMed  Google Scholar 

  19. 19.

    Halpern, M., Raats, D., Lavion, R. & Mittler, S. Dependent population dynamics between chironomids (nonbiting midges) and Vibrio cholerae. FEMS Microbiol. Ecol. 55, 98–104 (2006).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Echeverria, P., Harrison, B. A., Tirapat, C. & McFarland, A. Flies as a source of enteric pathogens in a rural village in Thailand. Appl. Environ. Microbiol. 46, 32–36 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Fotedar, R. Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta Trop. 78, 31–34 (2001).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Yildiz, F. H. & Schoolnik, G. K. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl Acad. Sci. USA 96, 4028–4033 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Watnick, P. I. & Kolter, R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Purdy, A. E. & Watnick, P. I. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc. Natl Acad. Sci. USA 108, 19737–19742 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhu, J. et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA 99, 3129–3134 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Van der Henst, C., Scrignari, T., Maclachlan, C. & Blokesch, M. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. ISME J. 10, 897–910 (2016).

    Article  PubMed  Google Scholar 

  27. 27.

    Sun, S., Kjelleberg, S. & McDougald, D. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. PLoS ONE 8, e56338 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hoque, M. M. et al. Quorum regulated resistance of Vibrio cholerae against environmental bacteriophages. Sci. Rep. 6, 37956 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Thelin, K. H. & Taylor, R. K. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect. Immun. 64, 2853–2856 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Joelsson, A., Liu, Z. & Zhu, J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect. Immun. 74, 1141–1147 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang, Z., Hang, S., Purdy, A. E. & Watnick, P. I. Mutations in the IMD pathway and mustard counter Vibrio cholerae suppression of intestinal stem cell division in Drosophila. mBio 4, e00337-13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Centers for Disease Control and Prevention. Update: outbreak of cholera—Haiti, 2010. Morb. Mortal. Wkly Rep. 59, 1586–1590 (2010).

    Google Scholar 

  33. 33.

    Chin, C. S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Centers for Disease Control and Prevention. Cholera outbreak–Haiti, October 2010. Morb. Mortal. Wkly Rep. 59, 1411 (2010).

    Google Scholar 

  35. 35.

    Azarian, T. et al. Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 5, e01824-14 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Vanhove, A. S. et al. Vibrio cholerae ensures function of host proteins required for virulence through consumption of luminal methionine sulfoxide. PLoS Pathog. 13, e1006428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Plamann, M. D., Rapp, W. D. & Stauffer, G. V. Escherichia coli K12 mutants defective in the glycine cleavage enzyme system. Mol. Gen. Genet. 192, 15–20 (1983).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Hang, S. et al. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism. Cell Host Microbe 16, 592–604 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Mancusso, R., Gregorio, G. G., Liu, Q. & Wang, D. N. Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491, 622–626 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mingrone, G. & Castagneto, M. Medium-chain, even-numbered dicarboxylic acids as novel energy substrates: an update. Nutr. Rev. 64, 449–456 (2006).

    Article  PubMed  Google Scholar 

  41. 41.

    Whereat, A. F., Hull, F. E. & Orishimo, M. W. The role of succinate in the regulation of fatty acid synthesis by heart mitochondria. J. Biol. Chem. 242, 4013–4022 (1967).

    CAS  PubMed  Google Scholar 

  42. 42.

    Chatterjee, D. et al. Control of metabolic adaptation to fasting by dILP6-induced insulin signaling in Drosophila oenocytes. Proc. Natl Acad. Sci. USA 111, 17959–17964 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Slaidina, M., Delanoue, R., Gronke, S., Partridge, L. & Leopold, P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell 17, 874–884 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Honegger, B. et al. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J. Biol. 7, 10 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Okamura, T., Shimizu, H., Nagao, T., Ueda, R. & Ishii, S. ATF-2 regulates fat metabolism in Drosophila. Mol. Biol. Cell 18, 1519–1529 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Musselman, L. P. et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model Mech. 4, 842–849 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Bandarra, D., Biddlestone, J., Mudie, S., Muller, H. A. & Rocha, S. HIF-1α restricts NF-κB-dependent gene expression to control innate immunity signals. Dis. Model Mech. 8, 169–181 (2015).

    Article  PubMed  Google Scholar 

  49. 49.

    Gronke, S. et al. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab. 1, 323–330 (2005).

    Article  PubMed  Google Scholar 

  50. 50.

    Peterson, J. S., Timmons, A. K., Mondragon, A. A. & McCall, K. The end of the beginning: cell death in the germline. Curr. Top. Dev. Biol. 114, 93–119 (2015).

    Article  PubMed  Google Scholar 

  51. 51.

    Michie, K. L., Cornforth, D. M. & Whiteley, M. Bacterial tweets and podcasts #signaling#eavesdropping#microbialfightclub. Mol. Biochem. Parasitol. 208, 41–48 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Jung, S. A., Chapman, C. A. & Ng, W. L. Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog. 11, e1004837 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Stutzmann, S. & Blokesch, M. Circulation of a quorum-sensing-impaired variant of Vibrio cholerae strain C6706 masks important phenotypes. mSphere 1, e00098-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Ruby, E. G. & McFall-Ngai, M. J. A squid that glows in the night: development of an animal-bacterial mutualism. J. Bacteriol. 174, 4865–4870 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Visick, K. L. & Ruby, E. G. Vibrio fischeri and its host: it takes two to tango. Curr. Opin. Microbiol. 9, 632–638 (2006).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    McFall-Ngai, M. J. & Ruby, E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal–bacterial mutualism. Science 254, 1491–1494 (1991).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Lee, K. H. & Ruby, E. G. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis. J. Bacteriol. 176, 1985–1991 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Fidopiastis, P. M., Miyamoto, C. M., Jobling, M. G., Meighen, E. A. & Ruby, E. G. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 45, 131–143 (2002).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Tamplin, M. L., Gauzens, A. L., Huq, A., Sack, D. A. & Colwell, R. R. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl. Environ. Microbiol. 56, 1977–1980 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    El-Bassiony, G. M., Luizzi, V., Nguyen, D., Stoffolano, J. G. Jr & Purdy, A. E. Vibrio cholerae laboratory infection of the adult house fly Musca domestica. Med. Vet. Entomol. 30, 392–402 (2016).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7, 58–63 (2011).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Jiang, C. et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60, 2484–2495 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    D’Ignazio, L., Bandarra, D. & Rocha, S. NF-κB and HIF crosstalk in immune responses. FEBS J. 283, 413–424 (2016).

    Article  PubMed  Google Scholar 

  65. 65.

    Diehl, J. et al. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res. 364, 245–262 (2016).

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    McCreath, K. J. et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes 64, 1154–1167 (2015).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Horton, R. M. et al. Gene splicing by overlap extension. Methods Enzymol. 217, 270–279 (1993).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Metcalf, W. W. et al. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13 (1996).

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Haugo, A. J. & Watnick, P. I. Vibrio cholerae CytR is a repressor of biofilm development. Mol. Microbiol. 45, 471–483 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Houot, L., Chang, S., Pickering, B. S., Absalon, C. & Watnick, P. I. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J. Bacteriol. 192, 3055–3067 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Smith, D. R. et al. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc. Natl Acad. Sci. USA 112, 10491–10496 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D. & Wishart, D. S. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 40, W127–W133 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Microscopy was performed at the Microscopy Resources on the North Quad (MicRoN) core facility at Harvard Medical School. This work was supported by National Institutes of Health grants R21 AI109436 (P.I.W.) and R01 AI097405 (J.G.M.). Many stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) and the Vienna Drosophila Resource Centre were used in this study. This work was partially supported by NIH grants 5P30CA006516 (J.M.A.) and 5P01CA120964 (J.M.A.). The authors thank S. Breitkopf and M. Yuan for help with mass spectrometry experiments, and R. Taylor for sharing strain C6706 with us. This skilled and generous scientist has left a great mark on the field and a void in our hearts.

Author information

Affiliations

Authors

Contributions

L.K., A.C.N.W., A.S.V., S.H., J.M.A. and P.I.W. designed the experiments. L.K., A.C.N.W., A.S.V., S.H. and J.M.A. performed the experiments. K.K.-P., A.E.P., A.A. and J.G.M. contributed critical reagents. L.K., A.C.N.W., A.S.V., S.H., J.M.A. and P.I.W. analysed the data. P.I.W. wrote the manuscript. All authors reviewed, edited and approved the manuscript.

Corresponding author

Correspondence to Paula I. Watnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–9.

Life Sciences Reporting Summary

Supplementary Table 1

Normalized levels of polar metabolites in LB broth and the spent supernatants of parental strain CH494 and corresponding ΔhapR and ΔhapRΔvpsA mutants.

Supplementary Table 2

Significantly different metabolites in the spent supernatants of the parental strain CH494 and corresponding ΔhapR and ΔhapRΔvpsA mutants calculated by a one-way ANOVA with FDR 0.05.

Supplementary Table 3

Strains and plasmids.

Supplementary Table 4

Primers used in this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamareddine, L., Wong, A.C.N., Vanhove, A.S. et al. Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat Microbiol 3, 243–252 (2018). https://doi.org/10.1038/s41564-017-0065-7

Download citation

Further reading