Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-sensing in Bacillus subtilis quorum-sensing systems

Abstract

Bacterial cell–cell signalling, or quorum sensing, is characterized by the secretion and groupwide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behaviour in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of this self-sensing effect and its impact on bacterial physiology are unclear. Here, we explore the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we find that secreting cells consistently show a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrate this effect to be a direct result of self-sensing and rule out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affects persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In co-culture, ComX-secreting cells have a stronger quorum-sensing response than non-secreting cells.
Fig. 2: The cell autonomous effect of ComX-secretion fits a self-sensing model with no over-reception.
Fig. 3: Self-sensing contributes to antibiotic persistence.
Fig. 4: Self-sensing in also apparent in the Rap-Phr system.

Similar content being viewed by others

References

  1. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  Google Scholar 

  2. Berg, H. C. Random Walks in Biology (Princeton Univ. Press, Princeton, 1993).

  3. Doğaner, B. A., Yan, L. K. & Youk, H. Autocrine signaling and quorum sensing: extreme ends of a common spectrum. Trends Cell. Biol. 26, 262–271 (2016).

    Article  Google Scholar 

  4. Youk, H. & Lim, W. A. Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 343, 1242782 (2014).

    Article  Google Scholar 

  5. Pottathil, M. & Lazazzera, B. A. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Front. Biosci. 8, d32–45 (2003).

    Article  Google Scholar 

  6. Grossman, A. D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis.Annu. Rev. Genet. 29, 477–508 (1995).

    Article  CAS  Google Scholar 

  7. Comella, N. & Grossman, A. D. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol. Microbiol. 57, 1159–1174 (2005).

    Article  CAS  Google Scholar 

  8. Yüksel, M. et al. Fitness trade-offs in competence differentiation of Bacillus subtilis. Front. Microbiol. 7, 888 (2016).

  9. Johnsen, P. J., Dubnau, D. & Levin, B. R. Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis. Genetics 181, 1521–1533 (2009).

    Article  CAS  Google Scholar 

  10. Magnuson, R., Solomon, J. & Grossman, A. D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77, 207–216 (1994).

    Article  CAS  Google Scholar 

  11. Bacon, S. K., Palmer, T. M. & Grossman, A. D. Characterization of comQ and comX, two genes required for production of ComX Pheromone in Bacillus subtilis. J. Bacteriol. 184, 410–419 (2002).

    Article  Google Scholar 

  12. Ansaldi, M. et al. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44, 1561–1573 (2002).

    Article  CAS  Google Scholar 

  13. Piazza, F., Tortosa, P. & Dubnau, D. Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. J. Bacteriol. 181, 4540–4548 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Oslizlo, A. et al. Private link between signal and response in Bacillus subtilis quorum sensing. Proc. Natl Acad. Sci. USA 111, 1586–1591 (2014).

    Article  CAS  Google Scholar 

  15. Tortosa, P. et al. Specificity and genetic polymorphism of the Bacillus competence quorum-sensing system. J. Bacteriol. 183, 451–460 (2001).

    Article  CAS  Google Scholar 

  16. Msadek, T. et al. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173, 2366–2377 (1991).

    Article  CAS  Google Scholar 

  17. Bendori, S. O. et al. The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J. Bacteriol. 197, 592–602 (2015).

    Article  Google Scholar 

  18. Parashar, V. et al. A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J. Bacteriol. 195, 2437–2448 (2013).

    Article  CAS  Google Scholar 

  19. Pollak, S., Omer Bendori, S. & Eldar, A. A complex path for domestication of B. subtilis sociality. Curr. Genet.  61, 493–496 (2015).

  20. Baker, M. D. & Neiditch, M. B. Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biol. 9, 2624 (2011).

    Article  Google Scholar 

  21. Lazazzera, B. A., Solomon, J. M. & Grossman, A. D. An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 89, 917–925 (1997).

    Article  CAS  Google Scholar 

  22. Lazazzera, B. A. et al. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J. Bacteriol. 181, 5193–5200 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Drees, B. et al. A modular view of the diversity of cell-density-encoding schemes in bacterial quorum-sensing systems. Biophys. J. 107, 266–277 (2014).

    Article  CAS  Google Scholar 

  24. Even-Tov, E. et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 14, e1002386 (2016).

    Article  Google Scholar 

  25. Schuster, M. et al. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67, 43–63 (2013).

    Article  CAS  Google Scholar 

  26. Schuster, M., Sexton, D. J. & Hense, B. A. Why quorum sensing controls private goods. Front. Microbiol. 8, 885 (2017).

    Article  Google Scholar 

  27. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

    Article  CAS  Google Scholar 

  28. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).

    Article  CAS  Google Scholar 

  29. Ratzke, C. & Gore, J. Self-organized patchiness facilitates survival in a cooperatively growing Bacillus subtilis population. Nat. Microbiol. 1, 16022 (2016).

    Article  CAS  Google Scholar 

  30. Hense, B. A. et al. Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5, 230–239 (2007).

    Article  CAS  Google Scholar 

  31. Harwood, C. R. & Cutting, S. M. (eds) Molecular Biological Methods for Bacillus (Wiley, Chichester, 1990).

Download references

Acknowledgements

This work was supported by European Research Council grants 281301 and 724805. The authors thank R.D. Oshri and N. Antonovsky for comments and N. Sigal for help with qPCR.

Author information

Authors and Affiliations

Authors

Contributions

T.B., S.P. and A.E. designed the experiments. T.B. performed the experiments. T.B., S.P. and A.E. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Avigdor Eldar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1 and 2, Supplementary Discussion, Supplementary References.

Life Sciences Reporting Summary

Supplementary Dataset 1

Supplementary Dataset 1Description: Zip file including 11 excel files. These files include all data used in the manuscript figures and supplementary figures. File name corresponds to the figure numbers whose data it includes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bareia, T., Pollak, S. & Eldar, A. Self-sensing in Bacillus subtilis quorum-sensing systems. Nat Microbiol 3, 83–89 (2018). https://doi.org/10.1038/s41564-017-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0044-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing