Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition

Abstract

The microbial environment influences animal physiology. However, the underlying molecular mechanisms of such functional interactions are largely undefined. Previously, we showed that during chronic undernutrition, strains of Lactobacillus plantarum, a major commensal partner of Drosophila, promote host juvenile growth and maturation partly through enhanced expression of intestinal peptidases. By screening a transposon insertion library of Lactobacillus plantarum in gnotobiotic Drosophila larvae, we identify a bacterial cell-wall-modifying machinery encoded by the pbpX2-dlt operon that is critical to enhance host digestive capabilities and promote animal growth and maturation. Deletion of this operon leads to bacterial cell wall alteration with a complete loss of d-alanylation of teichoic acids. We show that L. plantarum cell walls bearing d-alanylated teichoic acids are directly sensed by Drosophila enterocytes to ensure optimal intestinal peptidase expression and activity, juvenile growth and maturation during chronic undernutrition. We thus conclude that besides peptidoglycan, teichoic acid modifications participate in the host–commensal bacteria molecular dialogue occurring in the intestine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of L. plantarum NC8 loci involved in Drosophila growth promotion.
Fig. 2: The pbpX2-dlt operon affects Drosophila’s growth.
Fig. 3: Cell envelope changes related to pbpX2-dlt operon deletion.
Fig. 4: Drosophila-reduced protease expression in the presence of the Δdlt op strain is independent of the Imd pathway.
Fig. 5: Sensing of multiple cell wall motifs is required for Lp NC8-mediated larval growth promotion.

Similar content being viewed by others

References

  1. Erkosar, B. et al. Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling. PLoS ONE 9, e94729 (2014).

    Article  PubMed  Google Scholar 

  2. Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Erkosar, B. et al. Pathogen virulence impedes mutualist-mediated enhancement of host juvenile growth via inhibition of protein digestion. Cell Host Microbe 18, 445–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Storelli, G. et al. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, E.-K., Park, Y. M., Lee, O. Y. & Lee, W.-J. Draft genome sequence of Lactobacillus plantarum strain WJL, a Drosophila gut symbiont. Genome Announc. 1, e00937-13 (2013).

  7. Fraune, S. & Bosch, T. C. G. Why bacteria matter in animal development and evolution. Bioessays 32, 571–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Martino, M. E. et al. Resequencing of the Lactobacillus plantarum strain WJL genome. Genome Announc. 3, e01382-15 (2015).

  9. Gury, J. R. M., Barthelmebs, L. & Cavin, J.-F. O. Random transposon mutagenesis of Lactobacillus plantarum by using the pGh9:ISS1 vector to clone genes involved in the regulation of phenolic acid metabolism. Arch. Microbiol. 182, 337–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Schroeder, B. O. & Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Schwarzer, M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, D., Storelli, G., Mitchell, M. & Leulier, F. Studying host–microbiota mutualism in Drosophila: harnessing the power of gnotobiotic flies. Biomed. J. 38, 285–293 (2015).

    Article  PubMed  Google Scholar 

  13. Licandro-Seraut, H. et al. Development of an efficient in vivo system (Pjunc-TpaseIS1223) for random transposon mutagenesis of Lactobacillus casei. Appl. Environ. Microbiol. 78, 5417–5423 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wong, C. N. A., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Licandro-Seraut, H., Scornec, H., Pedron, T., Cavin, J. F. & Sansonetti, P. J. Functional genomics of Lactobacillus casei establishment in the gut. Proc. Natl Acad. Sci. USA. 111, E3101–E3109 (2014).

  16. Goh, Y. J. & Klaenhammer, T. R. Genomic features of Lactobacillus species. Front. Biosci. 14, 1362–1386 (2009).

    Article  CAS  Google Scholar 

  17. Perpetuini, G. et al. Identification of critical genes for growth in olive brine by transposon mutagenesis of Lactobacillus pentosus C11. Appl. Environ. Microbiol. 79, 4568–4575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kleerebezem, M. et al. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 34, 199–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 107, 20051–20056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blum, J. E., Fischer, C. N., Miles, J. & Handelsman, J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 4, e00860-13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 686–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017–3028 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palumbo, E. et al. d-Alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J. Bacteriol. 188, 3709–3715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Newell, P. D. & Douglas, A. E. Among-species interactions determine the impact of gut microbiota on nutrient allocation in Drosophila melanogaster. Appl. Environ. Microbiol. 80, 788–796 (2013).

    PubMed Central  Google Scholar 

  25. Wong, A. C. N., Dobson, A. J. & Douglas, A. E. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217, 1894–1901 (2014).

  26. Perea Vélez, M. et al. Functional analysis of d-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 73, 3595–3604 (2007).

    Article  PubMed  Google Scholar 

  27. Kovács, M. et al. A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J. Bacteriol. 188, 5797–5805 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leulier, F. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478–484 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lhocine, N. et al. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4, 147–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Axelsson, L. et al. Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J. Bacteriol. 194, 2391–2392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reichmann, N. T., Cassona, C. P. & Grundling, A. Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology 159, 1868–1877 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martino, M. E. et al. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ. Microbiol. 18, 4974–4989 (2016).

  34. Grangette, C. et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. USA 102, 10321–10326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rigaux, P. et al. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 64, 406–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Tabuchi, Y. et al. Inhibitory role for d-alanylation of wall teichoic acid in activation of insect toll pathway by peptidoglycan of Staphylococcus aureus. J. Immunol. 185, 2424–2431 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Kristian, S. A. et al. Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J. Infect. Dis. 188, 414–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Kristian, S. A. et al. d-Alanylation of teichoic acids promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J. Bacteriol. 187, 6719–6725 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peschel, A., Vuong, C., Otto, M. & Götz, F. The d-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob. Agents Chemother. 44, 2845–2847 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perego, M. et al. Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J. Biol. Chem. 270, 15598–15606 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Smelt, M. J. et al. The impact of Lactobacillus plantarum WCFS1 teichoic acid d-alanylation on the generation of effector and regulatory T-cells in healthy mice. PLoS ONE 8, e63099 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scornec, H. et al. Rapid 96-well plates DNA extraction and sequencing procedures to identify genome-wide transposon insertion sites in a difficult to lyse bacterium: Lactobacillus casei. J. Microbiol. Methods 106, 1–5 (2014).

    Article  Google Scholar 

  43. Alikhan, N.-F. et al. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12, 402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Maguin, E. et al. Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol. 178, 931–935 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clarke, A. J. Compositional analysis of peptidoglycan by high-performance anion-exchange chromatography. Anal. Biochem. 212, 344–350 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Schneider, C. A. et al. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ducret, A. et al. MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Strigini and G. Storelli for critical reading and editing of the manuscript; C. Grangeasse for helpful discussions and help with bacterial cell imaging; C. Login and T. Meylheuc from MIMA2 platform at INRA Jouy-en-Josas Research Center for TEM and SEM sample preparation and observation, respectively; the Arthro-Tools and PLATIM platforms of the SFR Biosciences (UMS3444/US8) for providing Drosophila and imaging facilities; the IGFL sequencing platform for deep sequencing; P. Serror for pG+host9 and H. Licandro-Seraut for the Pjunc-TpaseIS 1223 system. R.C.M. thanks the ‘Fondation pour la Recherche Médicale’ for financial support through a postdoctoral scholarship, SPF20140129318. M.E.M. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N8659510. This work was funded by an ERC starting grant (FP7/2007-2013-No. 309704). The laboratory of F.L. is supported by the FINOVI foundation and the EMBO Young Investigator Program.

Author information

Authors and Affiliations

Authors

Contributions

F.L. supervised the work. R.C.M. and F.L. designed the experiments. R.C.M., M.S., A.-L.B., D.M. and H.G. performed the experiments. B.G. and S.H. designed and performed high-throughput insertion tracking by deep sequencing. M.E.M. and P.J. performed the insertion site bioinformatics analysis. P.C. performed d-alanine and PG quantifications. A.-L.B. developed the protocol for proteolytic activity determination. R.C.M., A.-L.B., P.C., M.-P.C.-C., M.S. and F.L. analysed the results. R.C.M. and F.L. wrote the manuscript.

Corresponding author

Correspondence to François Leulier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures, Tables and References.

Life Sciences Reporting Summary

Supplementary Table 2

Transposon insertions in coding regions.

Supplementary Table 4

P values for statistical tests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, R.C., Schwarzer, M., Gervais, H. et al. D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition. Nat Microbiol 2, 1635–1647 (2017). https://doi.org/10.1038/s41564-017-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0038-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing