Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A viral protein antibiotic inhibits lipid II flippase activity

Abstract

For bacteriophage infections, the cell walls of bacteria, consisting of a single highly polymeric molecule of peptidoglycan (PG), pose a major problem for the release of progeny virions. Phage lysis proteins that overcome this barrier can point the way to new antibacterial strategies1, especially small lytic single-stranded DNA (the microviruses) and RNA phages (the leviviruses) that effect host lysis using a single non-enzymatic protein2. Previously, the A2 protein of levivirus Qβ and the E protein of the microvirus ϕX174 were shown to be ‘protein antibiotics’ that inhibit the MurA and MraY steps of the PG synthesis pathway2,3,4. Here, we investigated the mechanism of action of an unrelated lysis protein, LysM, of the Escherichia coli levivirus M5. We show that LysM inhibits the translocation of the final lipid-linked PG precursor called lipid II across the cytoplasmic membrane by interfering with the activity of MurJ. The finding that LysM inhibits a distinct step in the PG synthesis pathway from the A2 and E proteins indicates that small phages, particularly the single-stranded RNA (ssRNA) leviviruses, have a previously unappreciated capacity for evolving novel inhibitors of PG biogenesis despite their limited coding potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The lysis protein of phage M blocks lipid II flipping.
Fig. 2: LysM-resistance changes map to TMD2 and TMD7 of MurJ.
Fig. 3: LysM induces conformational changes in MurJ.
Fig. 4: LysM blocks lipid II flipping.

Similar content being viewed by others

References

  1. Fischetti, V. A. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11, 393–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernhardt, T. G., Wang, I. N., Struck, D. K. & Young, R. Breaking free: “protein antibiotics” and phage lysis. Res. Microbiol. 153, 493–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bernhardt, T. G., Roof, W. D. & Young, R. Genetic evidence that the bacteriophage ϕX174 lysis protein inhibits cell wall synthesis. Proc. Natl Acad. Sci. USA 97, 4297–4302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernhardt, T. G., Wang, I. N., Struck, D. K. & Young, R. A protein antibiotic in the phage Qβ virion: diversity in lysis targets. Science 292, 2326–2329 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Rumnieks, J. & Tars, K. Diversity of pili-specific bacteriophages: genome sequence of IncM plasmid-dependent RNA phage M. BMC Microbiol. 12, 277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sham, L. T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl Acad. Sci. USA 105, 15553–15557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elhenawy, W. et al. The O-antigen flippase Wzk can substitute for MurJ in peptidoglycan synthesis in Helicobacter pylori and Escherichia coli. PLoS One 11, e0161587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Butler, E. K., Davis, R. M., Bari, V., Nicholson, P. A. & Ruiz, N. Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli. J. Bacteriol. 195, 4639–4649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuk, A. C., Mashalidis, E. H. & Lee, S. Y. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struct. Mol. Biol. 24, 171–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Butler, E. K., Tan, W. B., Joseph, H. & Ruiz, N. Charge requirements of lipid II flippase activity in Escherichia coli. J. Bacteriol. 196, 4111–4119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meeske, A. J. et al. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc. Natl Acad. Sci. USA 112, 6437–6442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El Ghachi, M. et al. Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J. Biol. Chem. 281, 22761–22772 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Bernhardt, T. G., Struck, D. K. & Young, R. The lysis protein E of ϕX174 is a specific inhibitor of the MraY-catalyzed step in peptidoglycan synthesis. J. Biol. Chem. 276, 6093–6097 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Gorzelnik, K. V. et al. Asymmetric cryo-EM structure of the canonical allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ. Proc. Natl Acad. Sci. USA 113, 11519–11524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D. & Wang, D. Hyperexpansion of RNA bacteriophage diversity. PLoS Biol. 14, e1002409 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).

    Article  CAS  Google Scholar 

  19. Osawa, S., Furuse, K. & Watanabe, I. Distribution of ribonucleic acid coliphages in animals. Appl. Environ. Microbiol. 41, 164–168 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Domingo, E., Sabo, D., Taniguchi, T. & Weissmann, C. Nucleotide sequence heterogeneity of an RNA phage population. Cell 13, 735–744 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Domingo, E. & Holland, J. J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miller, J. H. (ed.) in Experiments in Molecular Genetics Ch. 28, 201–205 (Cold Spring Harbor Laboratory, Michigan, 1972).

  24. Yunck, R., Cho, H. & Bernhardt, T. G. Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. Mol. Microbiol. 99, 700–718 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Cho, H., Uehara, T. & Bernhardt, T. G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service Grant GM27099 to R.Y., by NIH grant AI099144 and CETR U19 AI109764 to T.G.B., by NIH grant R01GM100951 to N.R., and by the American Heart Association under the award number 14POST18480014 to L.-T.S. Additional support for this work was provided by the Center for Phage Technology at Texas A&M University, jointly sponsored by Texas A&M AgriLife. The authors thank H. Rye and L. Kustigian of the Department of Biochemistry and Biophysics, Texas A&M University, for providing purified eGFP standards.

Author information

Authors and Affiliations

Authors

Contributions

K.R.C., N.R., T.G.B. and R.Y. designed the study and the analysed results. K.R.C. performed genetic selections and microscopy, and constructed strains and plasmids. L.-T.S. performed ColM assays and performed the amJ rescue experiment. R.M.D. constructed various murJ haploid strains, performed their function and expression tests, and performed SCAM. L.M. performed lysis profiles of the LysM-resistant alleles and assisted in making the figures. H.C. constructed the E. coli multi-copy library. K.R.C., T.G.B. and R.Y. prepared the manuscript. N.R. and L.-T.S. edited the manuscript and provided text.

Corresponding authors

Correspondence to Thomas G. Bernhardt or Ry Young.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–12, Supplementary References.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamakura, K.R., Sham, LT., Davis, R.M. et al. A viral protein antibiotic inhibits lipid II flippase activity. Nat Microbiol 2, 1480–1484 (2017). https://doi.org/10.1038/s41564-017-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0023-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing