Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation

Abstract

Mosquito-borne viruses can cause severe inflammatory diseases and there are limited therapeutic solutions targeted specifically at virus-induced inflammation. Chikungunya virus (CHIKV), a re-emerging alphavirus responsible for several outbreaks worldwide in the past decade, causes debilitating joint inflammation and severe pain. Here, we show that CHIKV infection activates the NLRP3 inflammasome in humans and mice. Peripheral blood mononuclear cells isolated from CHIKV-infected patients showed elevated NLRP3, caspase-1 and interleukin-18 messenger RNA expression and, using a mouse model of CHIKV infection, we found that high NLRP3 expression was associated with peak inflammatory symptoms. Inhibition of NLRP3 activation using the small-molecule inhibitor MCC950 resulted in reduced CHIKV-induced inflammation and abrogated osteoclastogenic bone loss and myositis, but did not affect in vivo viral replication. Mice treated with MCC950 displayed lower expression levels of the cytokines interleukin-6, chemokine ligand 2 and tumour necrosis factor in joint tissue. Interestingly, MCC950 treatment abrogated disease signs in mice infected with a related arthritogenic alphavirus, Ross River virus, but not in mice infected with West Nile virus—a flavivirus. Here, using mouse models of alphavirus-induced musculoskeletal disease, we demonstrate that NLRP3 inhibition in vivo can reduce inflammatory pathology and that further development of therapeutic solutions targeting inflammasome function could help treat arboviral diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NLRP3, IL-18 and IL-1β expression is highly elevated in CHIKV-infected patients.
Fig. 2: CHIKV infection leads to rapid induction of inflammasomes in the ankle joints of mice.
Fig. 3: Treatment with NLRP3 and caspase-1 inhibitor ameliorates CHIKV-induced footpad swelling.
Fig. 4: Inhibition of inflammasome activation with MCC950 and Z-YVAD-FMK reduces pathological bone loss in CHIKV-infected mice.
Fig. 5: MCC950 and Z-YVAD-FMK treatment suppresses CHIKV-induced osteoclastogenesis.
Fig. 6: MCC950 and Z-YVAD-FMK treatment downregulates the expression of inflammasome components in CHIKV-infected mice.

References

  1. 1.

    Guo, H., Callaway, J. B. & Ting, J. P.-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kanneganti, T.-D. Central roles of NLRs and inflammasomes in viral infection. Nat. Rev. Immunol. 10, 688–698 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Morrison, T. E. et al. Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J. Virol. 80, 737–749 (2005).

    Article  Google Scholar 

  5. 5.

    Ekchariyawat, P. et al. Inflammasome signaling pathways exert antiviral effect against chikungunya virus in human dermal fibroblasts. Infect. Genet. Evol. 32, 401–408 (2015).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    McAuley, J. L. et al. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog. 9, e1003392 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chakrabarti, A. et al. RNase L activates the NLRP3 inflammasome during viral infections. Cell Host Microbe 17, 466–477 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Negash, A. A. et al. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PloS Pathog. 9, e1003330 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Johnson, K. E., Chikoti, L. & Chandran, B. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. 87, 5005–5018 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Getts, D. R. et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 6, 219ra7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Griffin, D. E. Alphaviruses. Encyclopedia Of Molecular Medicine (John Wiley & Sons, Hoboken, NJ, 2002).

    Google Scholar 

  13. 13.

    Suhrbier, A., Jaffar-Bandjee, M.-C. & Gasque, P. Arthritogenic alphaviruses—an overview. Nat. Rev. Rheumatol. 8, 420–429 (2012).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Suhrbier, A. & La Linn, M. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr. Opin. Rheumatol. 16, 374–379 (2004).

    Article  PubMed  Google Scholar 

  15. 15.

    Manimunda, S. P. et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med. Hyg. 104, 392–399 (2010).

    Article  PubMed  Google Scholar 

  16. 16.

    Chen, I.-Y. & Ichinohe, T. Response of host inflammasomes to viral infection. Trends Microbiol. 23, 55–63 (2015).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cao-Lormeau, V.-M. & Musso, D. Emerging arboviruses in the Pacific. Lancet 384, 1571–1572 (2014).

    Article  PubMed  Google Scholar 

  18. 18.

    Chen, W. et al. Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends Microbiol. 23, 35–43 (2015).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Taylor, A., Herrero, L. J., Rudd, P. A. & Mahalingam, S. Mouse models of alphavirus-induced inflammatory disease. J. Gen. Virol. 96, 221–238 (2015).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kaushik, D. K., Gupta, M., Kumawat, K. L. & Basu, A. NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS ONE 7, e32270 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Nakaya, H. I. et al. Gene profiling of chikungunya virus arthritis in a mouse model reveals significant overlap with rheumatoid arthritis. Arthritis Rheum. 64, 3553–3563 (2012).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ryman, K. D. & Klimstra, W. B. Closing the gap between viral and noninfectious arthritis. Proc. Natl Acad. Sci. USA 111, 5767–5768 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chen, W. et al. Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proc. Natl Acad. Sci. USA 111, 6040–6045 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Xing, L., Schwarz, E. M. & Boyce, B. F. Osteoclast precursors, RANKL/RANK, and immunology. Immunol. Rev. 208, 19–29 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Cao, Y. et al. Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res. 65, 1124–1128 (2005).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Pinzone, J. J. et al. The role of dickkopf-1 in bone development, homeostasis, and disease. Blood 113, 517–525 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zou, L. et al. Use of RUNX2 expression to identify osteogenic progenitor cells derived from human embryonic stem cells. Stem Cell Reports 4, 190–198 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gubler, D. J. Human arbovirus infections worldwide. Ann. NY Acad. Sci 951, 13–24 (2001).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Getts, D. R. et al. Ly6c+ ‘inflammatory monocytes’ are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J. Exp. Med. 205, 2319–2337 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Weaver, S. C. & Barrett, A. D. T. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2, 789–801 (2004).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Musso, D. & Gubler, D. J. Zika virus. Clin. Microbiol. Rev. 29, 487–524 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Shepard, D. S. Cost and burden of dengue and chikungunya from the Americas to Asia. Dengue Bull. 34, 1–5 (2010).

    Google Scholar 

  34. 34.

    Dubrulle, M., Mousson, L., Moutailler, S., Vazeille, M. & Failloux, A.-B. Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PloS ONE 4, e5895 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Styer, L. M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PloS Pathog. 3, 1262–1270 (2007).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Chen, W. et al. Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J. Virol. 89, 581–593 (2015).

    Article  PubMed  Google Scholar 

  37. 37.

    Chen, W., Foo, S.-S., Li, R. W., Smith, P. N. & Mahalingam, S. Osteoblasts from osteoarthritis patients show enhanced susceptibility to Ross River virus infection associated with delayed type I interferon responses. Virol. J. 11, 189 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Enomoto, H. et al. Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2–/– mice by RANKL transgene. J. Biol. Chem. 278, 23971–23977 (2003).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Poo, Y.-S. et al. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl. Trop. Dis. 8, e3354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Rulli, N. E. et al. Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum. 60, 2513–2523 (2009).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Rulli, N. E. et al. Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J. Infect. Dis 204, 1026–1030 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Poo, Y.-S. et al. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J. Virol. 88, 6862–6872 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Seregin, S. S. et al. NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal. Immunol. 10, 434–445 (2017).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Ramos, H. J. et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 8, e1003039 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).

    Google Scholar 

  46. 46.

    Bonar, S. L. et al. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS ONE 7, e35979 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Gurung, P., Burton, A. & Kanneganti, T.-D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis. Proc. Natl Acad. Sci. USA 113, 4452–4457 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Qu, C. et al. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J. 29, 1269–1279 (2015).

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Wikan, N. et al. Comprehensive proteomic analysis of white blood cells from chikungunya fever patients of different severities. J. Transl. Med. 12, 96 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chow, A. et al. Persistent arthralgia induced by chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis 203, 149–157 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Gardner, J. et al. Chikungunya virus arthritis in adult wild-type mice. J. Virol. 84, 8021–8032 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2–17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Masters (the Walter and Eliza Hall Institute of Medical Research) for kindly providing the caspase-1–/– and ASC–/– mice. This study was supported by grants from the Australian National Health and Medical Research Council (NHMRC) to S.M. (APP1079086). S.M. is the recipient of an NHMRC Senior Research Fellowship (APP1059167) and A.S. is the recipient of an NHMRC Principal Research Fellowship (APP1058391).

Author information

Affiliations

Authors

Contributions

W.C., L.F.P.N. and S.M. conceptualized and designed the study. W.C., S-S.F., A.Z., S.W., L.J.H., K.T., A.T. and J.R.F. performed the mouse CHIKV and RRV experiments and analysed the data. L.D.V. and C.v.V. performed the mouse WNV experiments and analysed the data. R.W.L. performed the bone computed tomography experiments and analysed the data. T.M.W. and R.G. performed MCC950 pharmacokinetics experiments and analysed the data. D.M.O., H.I.N., T-D.K., L.A.J.O., A.A.B.R., N.J.K., A.S. and M.A.C. provided the materials and analysis methods. A.Z. wrote the manuscript. A.Z., R.W.L., N.J.K., A.S., L.F.P.N., M.A.C. and S.M. reviewed and revised the manuscript.

Corresponding author

Correspondence to Suresh Mahalingam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–7, Supplementary Table 1, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Foo, S., Zaid, A. et al. Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat Microbiol 2, 1435–1445 (2017). https://doi.org/10.1038/s41564-017-0015-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing