Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryogenic nano-imaging of second-order moiré superlattices

Abstract

Second-order superlattices form when moiré superlattices with similar periodicities interfere with each other, leading to larger superlattice periodicities. These crystalline structures are engineered using two-dimensional materials such as graphene and hexagonal boron nitride, and the specific alignment plays a crucial role in facilitating correlation-driven topological phases. Signatures of second-order superlattices have been identified in magnetotransport experiments; however, real-space visualization is still lacking. Here we reveal the second-order superlattice in magic-angle twisted bilayer graphene closely aligned with hexagonal boron nitride through electronic transport measurements and cryogenic nanoscale photovoltage measurements and evidenced by long-range periodic photovoltage modulations. Our results show that even minuscule strain and twist-angle variations as small as 0.01° can lead to drastic changes in the second-order superlattice structure. Our real-space observations, therefore, serve as a ‘magnifying glass’ for strain and twist angle and can elucidate the mechanisms responsible for the breaking of spatial symmetries in twisted bilayer graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanoscale photovoltage measurements of MATBG/hBN SOSLs at T = 10 K.
Fig. 2: Gate and temperature responses of the observed photovoltage features and broken inversion symmetry.
Fig. 3: Electronic transport measurements.
Fig. 4: Calculation of second-order superlattice properties.
Fig. 5: Real-space maps of the SOSL as a function of twist angle and strain magnitude.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code that supports the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Xie, M. & MacDonald, A. H. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018).

    CAS  Google Scholar 

  7. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  Google Scholar 

  8. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

    CAS  Google Scholar 

  10. Kang, J. & Vafek, O. Strong coupling phases of partially filled twisted bilayer graphene narrow bands. Phys. Rev. Lett. 122, 246401 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Novelli, P., Torre, I., Koppens, F. H. L., Taddei, F. & Polini, M. Optical and plasmonic properties of twisted bilayer graphene: impact of interlayer tunneling asymmetry and ground-state charge inhomogeneity. Phys. Rev. B 102, 125403 (2020).

    Article  CAS  Google Scholar 

  12. Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Long, M. et al. An atomistic approach for the structural and electronic properties of twisted bilayer graphene-boron nitride heterostructures. npj Comput. Mater. 8, 73 (2022).

    Article  CAS  Google Scholar 

  15. Shi, J., Zhu, J. & Macdonald, A. H. Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 103, 75122 (2021).

    Article  CAS  Google Scholar 

  16. Cea, T., Pantaleón, P. A. & Guinea, F. Band structure of twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 102, 2–7 (2020).

    Article  Google Scholar 

  17. Shin, J., Park, Y., Chittari, B. L., Sun, J.-H. & Jung, J. Electron-hole asymmetry and band gaps of commensurate double moire patterns in twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 103, 075423 (2021).

    Article  CAS  Google Scholar 

  18. Mao, D. & Senthil, T. Quasiperiodicity, band topology, and moiré graphene. Phys. Rev. B 103, 115110 (2021).

    Article  CAS  Google Scholar 

  19. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, L. et al. New generation of moiré superlattices in doubly aligned hBN/graphene/hBN heterostructures. Nano Lett. 19, 2371–2376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finney, N. R. et al. Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 14, 1029–1034 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Z. et al. Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv. 5, eaay8897 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sinner, A., Pantaleón, P. A. & Guinea, F. Strain-induced quasi-1D channels in twisted moiré lattices. Phys. Rev. Lett. 131, 166402 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Aggarwal, D., Narula, R. & Ghosh, S. Moiré fractals in twisted graphene layers. Phys. Rev. B 109, 125302 (2024).

    Article  CAS  Google Scholar 

  25. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Wagner, G., Kwan, Y. H., Bultinck, N., Simon, S. H. & Parameswaran, S. Global phase diagram of the normal state of twisted bilayer graphene. Phys. Rev. Lett. 128, 156401 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Nuckolls, K. P. et al. Quantum textures of the many-body wavefunctions in magic-angle graphene. Nature 620, 525–532 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, Q., Krishna Kumar, R., Xu, S.-Y., Koppens, F. H. & Song, J. C. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 5, 170–184 (2023).

    Article  Google Scholar 

  32. Zhang, Y.-H., Mao, D. & Senthil, T. Twisted bilayer graphene aligned with hexagonal boron nitride: anomalous Hall effect and a lattice model. Phys. Rev. Research 1, 033126 (2019).

    Article  CAS  Google Scholar 

  33. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  CAS  Google Scholar 

  37. Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, L., Wang, S., Zhao, S., Crommie, M. & Wang, F. Soliton-dependent electronic transport across bilayer graphene domain wall. Nano Lett. 20, 5936–5942 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Benschop, T. et al. Measuring local moiré lattice heterogeneity of twisted bilayer graphene. Phys. Rev. Research 3, 013153 (2021).

    Article  CAS  Google Scholar 

  40. Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Mesple, F. et al. Heterostrain determines flat bands in magic-angle twisted graphene layers. Phys. Rev. Lett. 127, 126405 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

    Article  Google Scholar 

  43. Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M. & Terrones, H. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep. Prog. Phys. 80, 096501 (2017).

    Article  PubMed  Google Scholar 

  44. Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B. & Weng, T. Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970).

    Article  CAS  Google Scholar 

  45. Cosma, D. A., Wallbank, J. R., Cheianov, V. & Fal’ko, V. I. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Faraday Discuss. 173, 137–143 (2014).

    CAS  PubMed  Google Scholar 

  46. Jiang, Y. et al. Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass. Nano Lett. 17, 2839–2843 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Shi, J., Zhu, J. & MacDonald, A. Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride. Phys. Rev. B 103, 075122 (2021).

    Article  CAS  Google Scholar 

  48. Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

    Article  CAS  Google Scholar 

  49. Kaplan, D., Holder, T. & Yan, B. Twisted photovoltaics at terahertz frequencies from momentum shift current. Phys. Rev. Research 4, 013209 (2022).

    Article  CAS  Google Scholar 

  50. Kumar, R. K. et al. Terahertz photocurrent probe of quantum geometry and interactions in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2406.16532 (2024).

  51. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  53. Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  CAS  Google Scholar 

  57. Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article  CAS  Google Scholar 

  58. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Hesp, N. C. H. et al. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ju, L. et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol. 9, 348–352 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.H.L.K. acknowledges financial support from the Government of Catalonia through the SGR grant, and from the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Programme for Centres of Excellence in R&D (no. SEV-2015-0522) and Explora Ciencia (no. FIS2017-91599-EXP). F.H.L.K. also acknowledges support from the Fundacio Cellex Barcelona, Generalitat de Catalunya, through the CERCA program and the Mineco grant Plan Nacional (no. FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) (no. 2017-SGR-1656). Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 programme under grant agreement nos. 785219 (Graphene Flagship Core2), 881603 (Graphene Flagship Core3) and 820378 (Quantum Flagship). This work was supported by the ERC under grant agreement no. 726001 (TOPONANOP). P.S. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant no. 754510. N.C.H.H. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 665884. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233). This project has received funding from the ‘Presidencia de la Agencia Estatal de Investigación’ within the PRE2020-094404 predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

F.H.L.K. conceived the experiment. N.C.H.H., S.B.-P. and P.S. performed the near-field experiments on a system optimized by N.C.H.H., D.B.R. and H.H.S. Transport experiments were performed by P.S. on a system built by R.K.K. The sample was fabricated by P.S. using a contact recipe developed by H.A. and with hBN crystals provided by K.W. and T.T. The results were analysed and interpreted by N.C.H.H. and P.S. using a model developed by N.C.H.H. The manuscript was written by P.S., N.C.H.H. and F.H.L.K. with input from all authors. F.H.L.K. supervised the work.

Corresponding authors

Correspondence to Petr Stepanov or Frank H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12.

Source data

Source Data Fig. 1

Experimental data.

Source Data Fig. 2

Experimental data.

Source Data Fig. 3

Experimental data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesp, N.C.H., Batlle-Porro, S., Krishna Kumar, R. et al. Cryogenic nano-imaging of second-order moiré superlattices. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01993-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing