Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking

Abstract

Two-dimensional transition metal dichalcogenides, which feature atomically thin geometry and dangling-bond-free surfaces, have attracted intense interest for diverse technology applications, including ultra-miniaturized transistors towards the subnanometre scale. A straightforward exfoliation-and-restacking approach has been widely used for nearly arbitrary assembly of diverse two-dimensional (2D) heterostructures, superlattices and moiré superlattices, providing a versatile materials platform for fundamental investigations of exotic physical phenomena and proof-of-concept device demonstrations. While this approach has contributed importantly to the recent flourishing of 2D materials research, it is clearly unsuitable for practical technologies. Capturing the full potential of 2D transition metal dichalcogenides requires robust and scalable synthesis of these atomically thin materials and their heterostructures with designable spatial modulation of chemical compositions and electronic structures. The extreme aspect ratio, lack of intrinsic substrate and highly delicate nature of the atomically thin crystals present fundamental difficulties in material synthesis. Here we summarize the key challenges, highlight current advances and outline opportunities in the scalable synthesis of transition metal dichalcogenide-based heterostructures, superlattices and moiré superlattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges in CVD synthesis of 2D TMDs and heterostructures.
Fig. 2: Synthesis of 2D lateral heterostructures and superlattices.
Fig. 3: Synthesis of 2D vertical heterostructures and moiré superlattices.
Fig. 4: Two-dimensional vertical superlattices.
Fig. 5: Site-controlled growth.

Similar content being viewed by others

References

  1. Cao, W. et al. The future transistors. Nature 620, 501–515 (2023).

    CAS  PubMed  Google Scholar 

  2. Wang, S., Liu, X. & Zhou, P. The road for 2D semiconductors in the silicon age. Adv. Mater. 34, 2106886 (2022).

    CAS  Google Scholar 

  3. International Roadmap for Devices and Systems 2020 Edition (IEEE, 2020); https://irds.ieee.org/editions/2020

  4. Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).

    CAS  PubMed  Google Scholar 

  5. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    CAS  Google Scholar 

  6. Zhu, K. et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021).

    CAS  Google Scholar 

  7. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    CAS  Google Scholar 

  8. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    CAS  PubMed  Google Scholar 

  9. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Google Scholar 

  10. Li, J. et al. Synthesis of ultrathin metallic MTe2(M = V, Nb, Ta) single‐crystalline nanoplates. Adv. Mater. 30, 1801043 (2018).

    Google Scholar 

  11. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    CAS  Google Scholar 

  12. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    CAS  Google Scholar 

  13. Zhou, Z. J. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 621, 499–505 (2023).

    CAS  PubMed  Google Scholar 

  14. Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Zhang, T., Wang, J., Wu, P., Lu, A.-Y. & Kong, J. Vapour-phase deposition of two-dimensional layered chalcogenides. Nat. Rev. Mater. 8, 799–821 (2023).

    CAS  Google Scholar 

  16. Zhang, Z. W. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    CAS  PubMed  Google Scholar 

  17. Zuo, Y. G. et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin, Y.-C. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012).

    CAS  PubMed  Google Scholar 

  19. Zhan, Y. J., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    CAS  PubMed  Google Scholar 

  20. Lin, H. et al. Growth of environmentally stable transition metal selenide films. Nat. Mater. 18, 602–607 (2019).

    CAS  PubMed  Google Scholar 

  21. Zhang, Z. et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl Sci. Rev. 7, 737–744 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Z. et al. Highly selective synthesis of monolayer or bilayer WSe2 single crystals by pre-annealing the solid precursor. Chem. Mater. 33, 1307–1313 (2021).

    CAS  Google Scholar 

  23. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    CAS  PubMed  Google Scholar 

  24. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  PubMed  Google Scholar 

  25. Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).

    CAS  PubMed  Google Scholar 

  26. Wang, Q. et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl Sci. Rev. 9, nwac077 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Xia, Y. et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 22, 1324–1331 (2023).

    CAS  PubMed  Google Scholar 

  29. Wang, Q. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193–7199 (2020).

    CAS  PubMed  Google Scholar 

  30. Xue, G. et al. Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68, 1514–1521 (2023).

    CAS  Google Scholar 

  31. Chen, J. et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139, 1073–1076 (2017).

    CAS  PubMed  Google Scholar 

  32. Xu, X. L. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    CAS  PubMed  Google Scholar 

  33. Li, T. T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    CAS  PubMed  Google Scholar 

  34. Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, J. H. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

    CAS  PubMed  Google Scholar 

  36. Fu, J.-H. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 18, 1289–1294 (2023).

    CAS  PubMed  Google Scholar 

  37. Yang, P. et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat. Commun. 13, 3238 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    CAS  PubMed  Google Scholar 

  39. Zheng, P. et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 14, 592 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Son, Y. et al. Observation of switchable photoresponse of a monolayer WSe2–MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 16, 3571–3577 (2016).

    CAS  PubMed  Google Scholar 

  41. Yoo, Y., Degregorio, Z. P. & Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 137, 14281–14287 (2015).

    CAS  PubMed  Google Scholar 

  42. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS  PubMed  Google Scholar 

  43. Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    CAS  PubMed  Google Scholar 

  44. Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  PubMed  Google Scholar 

  45. Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    CAS  PubMed  Google Scholar 

  46. Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutierrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63–67 (2018).

    CAS  PubMed  Google Scholar 

  47. Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    CAS  PubMed  Google Scholar 

  48. Zhang, Z. W. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 17, 493–499 (2022).

    CAS  PubMed  Google Scholar 

  49. Mahjouri-Samani, M. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015).

    CAS  PubMed  Google Scholar 

  50. Gong, Y. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).

    CAS  PubMed  Google Scholar 

  51. Yang, T. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8, 1906 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Zhang, T. et al. Twinned growth behaviour of two-dimensional materials. Nat. Commun. 7, 13911 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Q. et al. Two-dimensional layered heterostructures synthesized from core–shell nanowires. Angew. Chem. Int. Ed. 54, 8957–8960 (2015).

    Google Scholar 

  54. Zhang, J. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 28, 1950–1956 (2016).

    CAS  PubMed  Google Scholar 

  55. Zhang, F. et al. Full orientation control of epitaxial MoS2 on hBN assisted by substrate defects. Phys. Rev. B 99, 155430 (2019).

    CAS  Google Scholar 

  56. Zhang, X. T. et al. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13, 3341–3352 (2019).

    CAS  PubMed  Google Scholar 

  57. Wu, R. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Google Scholar 

  58. Li, B. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 20, 818–825 (2021).

    CAS  PubMed  Google Scholar 

  59. Zhao, B. et al. Van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 12, 1683–1689 (2019).

    CAS  Google Scholar 

  60. Seok, H. et al. Low-temperature synthesis of wafer-scale MoS2–WS2 vertical heterostructures by single-step penetrative plasma sulfurization. ACS Nano 15, 707–718 (2021).

    CAS  PubMed  Google Scholar 

  61. Choudhary, N. et al. Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure. Sci. Rep. 6, 25456 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xue, Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10, 573–580 (2016).

    CAS  PubMed  Google Scholar 

  63. Yuan, J. et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces 10, 40614–40622 (2018).

    CAS  PubMed  Google Scholar 

  64. Wu, C.-R. et al. Establishment of 2D crystal heterostructures by sulfurization of sequential transition metal depositions: preparation, characterization, and selective growth. Nano Lett. 16, 7093–7097 (2016).

    CAS  PubMed  Google Scholar 

  65. Liu, C. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022).

    CAS  PubMed  Google Scholar 

  66. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  PubMed  Google Scholar 

  67. Susarla, S. et al. Hyperspectral imaging of exciton confinement within a moiré unit cell with a subnanometer electron probe. Science 378, 1235–1239 (2022).

    CAS  PubMed  Google Scholar 

  68. Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    CAS  PubMed  Google Scholar 

  70. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    CAS  PubMed  Google Scholar 

  71. Fortin-Deschênes, M., Watanabe, K., Taniguchi, T. & Xia, F. Van der Waals epitaxy of tunable moirés enabled by alloying. Nat. Mater. 23, 339–346 (2024).

    PubMed  Google Scholar 

  72. Shao, G. et al. Twist angle-dependent optical responses in controllably grown WS2 vertical homojunctions. Chem. Mater. 32, 9721–9729 (2020).

    CAS  Google Scholar 

  73. Zheng, H. et al. Strong interlayer coupling in twisted transition metal dichalcogenide moiré superlattices. Adv. Mater. 35, 2210909 (2023).

    CAS  Google Scholar 

  74. Zhao, Y. Z. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    CAS  PubMed  Google Scholar 

  75. Wang, Z.-J. et al. Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals. Nat. Mater. 23, 331–338 (2024).

    CAS  PubMed  Google Scholar 

  76. Jin, G. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021).

    CAS  PubMed  Google Scholar 

  77. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    CAS  PubMed  Google Scholar 

  78. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    CAS  PubMed  Google Scholar 

  79. Zhao, X. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020).

    CAS  PubMed  Google Scholar 

  80. Zhang, L. et al. 2D atomic crystal molecular superlattices by soft plasma intercalation. Nat. Commun. 11, 5960 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017).

    CAS  PubMed  Google Scholar 

  82. Devarakonda, A. et al. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 370, 231–236 (2020).

    CAS  PubMed  Google Scholar 

  83. Dolotko, O. et al. Unprecedented generation of 3D heterostructures by mechanochemical disassembly and re-ordering of incommensurate metal chalcogenides. Nat. Commun. 11, 3005 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhong, H. et al. Revealing the two-dimensional electronic structure and anisotropic superconductivity in a natural van der Waals superlattice (PbSe)1.14NbSe2. Phys. Rev. Mater. 7, L041801 (2023).

    CAS  Google Scholar 

  85. Zhou, J. et al. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 609, 46–51 (2022).

    CAS  PubMed  Google Scholar 

  86. Wu, W. et al. Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv. Mater. 23, 4898–4903 (2011).

    CAS  PubMed  Google Scholar 

  87. Han, G. H. et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 6, 6128 (2015).

    CAS  PubMed  Google Scholar 

  88. Guo, Y. F. et al. Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proc. Natl Acad. Sci. USA 116, 3437–3442 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Guo, Y. et al. Designing artificial two-dimensional landscapes via atomic-layer substitution. Proc. Natl Acad. Sci. USA 118, e2106124118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    CAS  PubMed  Google Scholar 

  91. Tan, C. et al. 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).

    CAS  PubMed  Google Scholar 

  92. Zhao, M. V. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016).

    CAS  PubMed  Google Scholar 

  93. Chiu, M. H. et al. Metal-guided selective growth of 2D materials: demonstration of a bottom-up CMOS inverter. Adv. Mater. 31, 1900861 (2019).

    Google Scholar 

  94. Song, S. et al. Atomic transistors based on seamless lateral metal-semiconductor junctions with a sub-1-nm transfer length. Nat. Commun. 13, 4916 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, R. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497–504 (2022).

    CAS  Google Scholar 

  96. Xu, M. et al. Reconfiguring nucleation for CVD growth of twisted bilayer MoS2 with a wide range of twist angles. Nat. Commun. 15, 562 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

X.D. acknowledges support from the National Key R&D Program of the Ministry of Science and Technology of China (grant no. 2022YFA1203801), the National Natural Science Foundation of China (grant nos 51991340, 51991343 and 52221001) and the Innovative Research Groups of Hunan Province (grant no. 2020JJ1001). J.L. acknowledges support from the National Natural Science Foundation of China (grant nos. 52102168 and 52372145) and the Natural Science Foundation of Hunan Province (grant nos 2023JJ20009 and 2023RC3092). X.Y. acknowledges support from the National Natural Science Foundation of China (grant no. 62341402), Yongjiang Talent Introduction Programme (grant no. 2023A-167-G) and the Ningbo Natural Science Foundation (grant no. 2023J023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xidong Duan or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Humberto Gutierrez and Vincent Tung for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, X., Zhang, Z. et al. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. Nat. Mater. 23, 1326–1338 (2024). https://doi.org/10.1038/s41563-024-01989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01989-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing