Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cation-eutaxy-enabled III–V-derived van der Waals crystals as memristive semiconductors

Abstract

Novel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging. Herein we prepared a class of semiconducting III–V-derived van der Waals crystals, specifically the HxA1xBX form, exhibiting memristive characteristics. To identify candidates for the material synthesis, we conducted a systematic high-throughput screening, leading us to 44 prospective III–V candidates; of these, we successfully synthesized ten, including nitrides, phosphides, arsenides and antimonides. These materials exhibited intriguing characteristics such as electrochemical polarization and memristive phenomena while retaining their semiconductive attributes. We demonstrated the gate-tunable synaptic and logic functions within single-gate memtransistors, capitalizing on the synergistic interplay between the semiconducting and memristive properties of our two-dimensional crystals. Our approach guides the discovery of van der Waals materials with unique properties from unconventional crystal symmetries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental realization of the newly predicted protonated III–V vdW crystal.
Fig. 2: The vdW HxK1xGaSb2 crystal and electrochemical polarization.
Fig. 3: Memristive characteristics of 4O-HxK1xGaSb2.
Fig. 4: Logic gates in a single 4O-HxK1xGaSb2 memtransistor.

Similar content being viewed by others

Data availability

The data that support the other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper. Other relevant information in this study is included in the Supplementary Information.

References

  1. Xiao, X., Wang, H., Urbankowski, P. & Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47, 8744–8765 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Uppuluri, R., Gupta, A. S., Rosas, A. S. & Mallouk, T. E. Soft chemistry of ion-exchangeable layered metal oxides. Chem. Soc. Rev. 47, 2401–2430 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Yan, X., Qian, J. H., Sangwan, V. K. & Hersam, M. C. Progress and challenges for memtransistors in neuromorphic circuits and systems. Adv. Mater. 34, 2108025 (2022).

    Article  CAS  Google Scholar 

  5. Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    Article  CAS  Google Scholar 

  6. Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14, 35–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Li, M. et al. Imperfection-enabled memristive switching in van der Waals materials. Nat. Electron. 6, 491–505 (2023).

    Article  CAS  Google Scholar 

  8. Geselbracht, M. J., Richardson, T. J. & Stacy, A. M. Superconductivity in the layered compound LixNbO2. Nature 345, 324–326 (1990).

    Article  CAS  Google Scholar 

  9. Peng, J. et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat. Chem. 13, 1235–1240 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Hantanasirisakul, K. & Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30, 1804779 (2018).

    Article  Google Scholar 

  11. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B Struct. Sci. 58, 364–369 (2002).

    Article  Google Scholar 

  12. Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  13. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  14. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Rohrer, G. S. Structure and Bonding in Crystalline Materials (Cambridege Univ. Press, 2001).

  16. Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022).

    Article  Google Scholar 

  18. Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5, 749–754 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Lide, D. R. (ed.) CRC Handbook of Chemistry and Physics 77th edn (CRC Press, 1996).

  20. Streetman, B. G. Solid State Electronic Devices 3rd edn (Prentice Hall, 1990).

  21. Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    Article  CAS  Google Scholar 

  22. Xue, F. et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 31, 1901300 (2019).

    Article  Google Scholar 

  23. Kwon, G. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241–247 (2022).

    Article  CAS  Google Scholar 

  24. Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y. et al. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 4, 348–356 (2021).

    Article  CAS  Google Scholar 

  28. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: from Single Neurons to Networks and Models of Cognition (Cambridge Univ. Press, 2014).

  29. Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  30. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  CAS  Google Scholar 

  31. Bae, J. et al. Kinetic 2D crystals via topochemical approach. Adv. Mater. 33, 2006043 (2021).

    Article  CAS  Google Scholar 

  32. Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).

    Article  CAS  Google Scholar 

  34. Sun, W. et al. Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem. Mater. 29, 6936–6946 (2017).

    Article  CAS  Google Scholar 

  35. Ganose, A. M. & Jain, A. Robocrystallographer: automated crystal structure text descriptions and analysis. MRS Commun. 9, 874–881 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea through a grant funded by the Korean government (2018M3D1A1058793) and a grant from the Institute for Basic Science (IBS-R026-D1). We are grateful to the UK Materials and Molecular Modelling Hub for providing computational resources, which were partially funded by the Engineering and Physical Sciences Research Council (EPSRC; EP/T022213/1).

Author information

Authors and Affiliations

Authors

Contributions

J.B., J.W., Taeyoung Kim, S.C., Hyesoo Kim, J.C., Cheolmin Park, J.-Y.K. and W.S. designed the experiments. J.B., J.W., Taeyoung Kim, S.C., Hyesoo Kim, E.L., S.J., Minjung Kim, S. Kim, Y.C., B.K., Hong Choi and J.H. synthesized the materials. J.B., Minjung Kim, H.W.D., D.S., H. Kang, Taehoon Kim, N.N., H.M., Jeongmin Kim, Dohyun Kim, W.L. and Heonjin Choi developed the devices and performed the measurements. S.-H.V.O., G.L., H.L., H.-J.S., M.-C.J., K.J.C., M.J.H. and A.S. performed the first-principles calculations and analyses, while D.W.D. and A.W. developed the data-driven models. Chanho Park, K.L., S. Kang, Jungkil Kim, I.C., Hyunyong Choi, Dohun Kim, H.Y., Y.K., H.-G.P., Miso Kim and Cheolmin Park analysed the characteristics. J.B., J.W., S.C., H. Kim, E.L., B.-K.Y., Jaegyeom Kim, M.K.C., J.-H.B., S.P., H.B., J.-H.L., D.W.C., J.-Y.K. and W.S. performed the structural analysis. All authors wrote the manuscript and contributed to the overall scientific interpretation.

Corresponding authors

Correspondence to Aloysius Soon, Jinwoo Cheon, Cheolmin Park, Jong-Young Kim or Wooyoung Shim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Gerbrand Ceder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 8 and 9, Discussions 1 and 2, Methods and references.

Supplementary Tables

Supplementary Tables 1–7.

Source data

Source Data Fig. 2

Fig. 2 source data.

Source Data Fig. 3

Fig. 3 source data.

Source Data Fig. 4

Fig. 4 source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J., Won, J., Kim, T. et al. Cation-eutaxy-enabled III–V-derived van der Waals crystals as memristive semiconductors. Nat. Mater. 23, 1402–1410 (2024). https://doi.org/10.1038/s41563-024-01986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01986-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing