Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predesigned perovskite crystal waveguides for room-temperature exciton–polariton condensation and edge lasing

Abstract

Perovskite crystals—with their exceptional nonlinear optical properties, lasing and waveguiding capabilities—offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton–polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures. Large blueshifts with excitation power and high mutual coherence between the different edge and corner lasing signals are detected in the far-field photoluminescence, implying that a spatially extended condensates of coherent polaritons has formed. The condensate polaritons are found to propagate over long distances in the wires from the excitation spot and can couple to neighbouring wires through large air gaps, making our platform promising for integrated polaritonic circuitry and on-chip optical devices with strong nonlinearities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Arbitrarily shaped perovskite structures.
Fig. 2: Edge condensation in perovskite waveguides.
Fig. 3: Polariton coherence and dispersion in perovskite waveguides.
Fig. 4: Polariton condensates at the edges for perovskite structures.

Similar content being viewed by others

Data availability

All data used in the study are available via Zenodo at https://doi.org/10.5281/zenodo.12749130 (ref. 54).

Code availability

The codes used in this study are available from the corresponding author upon reasonable request.

References

  1. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    Article  CAS  Google Scholar 

  2. Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 20, 1315–1324 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Q. et al. Advances in small perovskite-based lasers. Small Methods 1, 1700163 (2017).

    Article  Google Scholar 

  4. Wang, K., Wang, S., Xiao, S. & Song, Q. Recent advances in perovskite micro- and nanolasers. Adv. Opt. Mater. 6, 1800278 (2018).

    Article  Google Scholar 

  5. Dong, H., Zhang, C., Liu, X., Yao, J. & Zhao, Y. S. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 49, 951–982 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Q., Shang, Q., Su, R., Do, T. T. H. & Xiong, Q. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett. 21, 1903–1914 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Soci, C. et al. (Invited) roadmap on perovskite nanophotonics. Opt. Mater.: X 17, 100214 (2023).

    Google Scholar 

  8. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Fu, Y. et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 10, 7963–7972 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Yue, L., Yan, B., Attridge, M. & Wang, Z. Light absorption in perovskite solar cell: fundamentals and plasmonic enhancement of infrared band absorption. Sol. Energy 124, 143–152 (2016).

    Article  CAS  Google Scholar 

  11. Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Cegielski, P. J. et al. Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express 25, 13199–13206 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article  CAS  Google Scholar 

  14. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  15. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Kavokin, A. et al. Polariton condensates for classical and quantum computing. Nat. Rev. Phys. 4, 435–451 (2022).

    Article  Google Scholar 

  17. Opala, A. & Matuszewski, M. Harnessing exciton-polaritons for digital computing, neuromorphic computing, and optimization [invited]. Opt. Mater. Express 13, 2674–2689 (2023).

    Article  CAS  Google Scholar 

  18. Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng, J. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tao, R. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photon. 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  22. Fu, Y. et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16, 1000–1008 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Evans, T. J. S. et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2018).

    Article  Google Scholar 

  24. Schlaus, A. P. et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun. 10, 265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chu, K. et al. Dimension-programmable CsPbBr3 nanowires for plasmonic lasing with PDMS templated technique. J. Phys. D: Appl. Phys. 55, 215104 (2022).

    Article  CAS  Google Scholar 

  26. Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15, 4571–4577 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, N. et al. Highly reproducible organometallic halide perovskite microdevices based on top-down lithography. Adv. Mater. 29, 1606205 (2017).

    Article  Google Scholar 

  28. Wang, K., Xing, G., Song, Q. & Xiao, S. Micro- and nanostructured lead halide perovskites: from materials to integrations and devices. Adv. Mater. 33, 2000306 (2021).

    Article  CAS  Google Scholar 

  29. Pushkarev, A. et al. Nanoimprinted halide perovskite nanowires with directly-written gratings. Photonics Nanostruct. Fundam. Appl. 53, 101103 (2023).

    Article  Google Scholar 

  30. Liang, L. et al. Patterning technologies for metal halide perovskites: a review. Adv. Mater. Technol. 8, 2200419 (2023).

    Article  Google Scholar 

  31. Li, S.-X. et al. Template-confined growth of Ruddlesden–Popper perovskite micro-wire arrays for stable polarized photodetectors. Nanoscale 11, 18272–18281 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Ren, L. et al. High-performance perovskite photodetectors based on CsPbBr3 microwire arrays. Appl. Opt. 60, 8896–8903 (2021).

    Article  PubMed  Google Scholar 

  33. Łempicka-Mirek, K. et al. Electrical polarization switching of perovskite polariton laser. Nanophotonics 13, 2659–2668 (2024).

  34. Viola, I. et al. Microfluidic-assisted growth of perovskite single crystals for photodetectors. Adv. Mater. Technol. 8, 2300023 (2023).

    Article  CAS  Google Scholar 

  35. Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haüy, R. J. Traité de Mineralogie Vol. 1 (Chez Louis, 1801).

  39. Li, Z. et al. High-quality all-inorganic perovskite CsPbBr3 microsheet crystals as low-loss subwavelength exciton–polariton waveguides. Nano Lett. 21, 1822–1830 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Coriolano, A. et al. Engineering Dion-Jacobson perovskites in polariton waveguides. Preprint at https://arxiv.org/abs/2307.15070 (2023).

  41. Antón, C. et al. Energy relaxation of exciton-polariton condensates in quasi-one-dimensional microcavities. Phys. Rev. B 88, 035313 (2013).

    Article  Google Scholar 

  42. Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Aristov, D., Baryshev, S., Töpfer, J. D., Sigurðsson, H. & Lagoudakis, P. G. Directional planar antennae in polariton condensates. Appl. Phys. Lett. 123, 121101 (2023).

    Article  CAS  Google Scholar 

  44. Gao, T. et al. Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012).

    Article  Google Scholar 

  45. Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

    Article  CAS  Google Scholar 

  47. Zhao, Y. et al. Electrostatic epitaxy of orientational perovskites for microlasers. Adv. Mater. 35, 2210594 (2023).

    Article  CAS  Google Scholar 

  48. Jamadi, O. et al. Edge-emitting polariton laser and amplifier based on a ZnO waveguide. Light Sci. Appl. 7, 82 (2018).

  49. Kang, J.-W. et al. Room temperature polariton lasing in quantum heterostructure nanocavities. Sci. Adv. 5, eaau9338 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dems, M., Kotynski, R. & Panajotov, K. Planewave admittance method—a novel approach for determining the electromagnetic modes in photonic structures. Opt. Express 13, 3196–3207 (2005).

    Article  PubMed  Google Scholar 

  51. Dang, N. H. M. et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett. 20, 2113–2119 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Beierlein, J. et al. Propagative oscillations in codirectional polariton waveguide couplers. Phys. Rev. Lett. 126, 075302 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Walker, P. M. et al. Ultra-low-power hybrid light–matter solitons. Nat. Commun. 6, 8317 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Kędziora, M., Opala, A. & Piętka, B. Data for M. Kędziora, et al. ‘Predesigned perovskite crystal waveguides for room temperature exciton-polariton condensation and edge-lasing’. Zenodo https://doi.org/10.5281/zenodo.12749130 (2024).

Download references

Acknowledgements

We thank A. Coriolano and I. Viola for support in the synthesis development. We also thank R. Grzela and R. Bożek for help with confocal fluorescence and atomic force microscopy images. This work was supported by the National Science Center, Poland, under projects 2022/47/B/ST3/02411 (B.P., M. Kędziora and K.T.), 2021/43/B/ST3/00752 (M.M.) and 2019/35/N/ST3/01379 (A.O.), and financed by the European Union EIC Pathfinder Open project ‘Polariton Neuromorphic Accelerator’ (PolArt, ID: 101130304) (B.P., D.S., J.S. and M.M.). H.S. acknowledges project no. 2022/45/P/ST3/00467 co-funded by the Polish National Science Centre and the European Union Framework Programme for Research and Innovation Horizon 2020 under the Marie Skłodowska-Curie grant agreement no. 945339. A.O. acknowledges support from the Foundation for Polish Science (FNP). This work was supported by the joint bilateral project ‘Novel photonic platform for neuromorphic computing’ Italy MAECI–Poland NAWA PPN/BIT/2021/1/ 00124/U/00001 (K.Ł.-M., B.P., R.M., L.D.M. and D.S.). M.E., A.S. and K.B. acknowledge support from the statutory funds of the Łukasiewicz Research Network–Institute of Microelectronics and Photonics. This work had been completed while K.B. was a Doctoral Candidate in the Interdisciplinary Doctoral School at the Łódź University of Technology, Poland.

Author information

Authors and Affiliations

Authors

Contributions

M. Kędziora and B.P. conceived the idea. A.O., T.C. and M.M. developed the theoretical description. M. Kędziora, M. Król, K.T. and B.P. performed the optical experiments. M.E., K.B. and A.S. prepared the GaAs masters. M.G. performed the X-ray diffraction experiments, M. Kędziora, R.M., L.D.M. and K.Ł.-M. grew the perovskite crystals. M. Kędziora, A.O., H.S. and B.P. wrote the manuscript with input from all other authors. J.S., D.S. and B.P. supervised the project.

Corresponding author

Correspondence to Barbara Piętka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–14 and Figs. 1–31.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kędziora, M., Opala, A., Mastria, R. et al. Predesigned perovskite crystal waveguides for room-temperature exciton–polariton condensation and edge lasing. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01980-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing