Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breaking the vitrification limitation of monatomic metals

Abstract

The question of whether all materials can solidify into the glassy form proposed by Turnbull half a century ago remains unsolved. Some of the simplest systems of monatomic metals have not been vitrified, especially the close-packed face-centred cubic metals. Here we report the vitrification of gold, which is notoriously difficult to be vitrified, and several similar close-packed face-centred cubic and hexagonal metals using a method of picosecond pulsed laser ablation in a liquid medium. The vitrification occurs through the rapid cooling during laser ablation and the inhibition of nucleation by the liquid medium. Using this method, a large number of atomic configurations, including glassy configurations, can be generated simultaneously, from which a stable glass state can be sampled. Simulations demonstrate that the favourable stability of monatomic metals stems from the strong topological frustration of icosahedra-like clusters. Our work breaks the limitation of the glass-forming ability of matter, indicating that vitrification is an intrinsic property of matter and providing a strategy for the preparation and design of metallic glasses from an atomic configuration perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of a laser-aided ultrafast quenching approach in ethanol medium and the preparation of fcc (Au) and hcp (Ru) MMG NPs.
Fig. 2: The devitrification process of MMGs.
Fig. 3: Extensive preparation of MMG NPs from monatomic metals that include bcc, hcp and fcc metals.
Fig. 4: Effect of the liquid medium and the origin of stability disclosed via MD simulations.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available within the article and its Supplementary Information.

References

  1. Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  2. Turnbull, D. Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411–424 (1952).

    Article  CAS  Google Scholar 

  3. Turnbull, D. & Cohen, M. H. Concerning reconstructive transformation and formation of glass. J. Chem. Phys. 29, 1049–1054 (1958).

    Article  CAS  Google Scholar 

  4. Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969).

    Article  CAS  Google Scholar 

  5. Cohen, M. H. & Turnbull, D. Metastability of amorphous structures. Nature 203, 964 (1964).

    Article  Google Scholar 

  6. Bhat, M. H. et al. Vitrification of a monatomic metallic liquid. Nature 448, 787–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Greer, A. L. New horizons for glass formation and stability. Nat. Mater. 14, 542–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Davies, H. A., Aucote, J. & Hull, J. B. Amorphous nickel produced by splat quenching. Nat. Phys. Sci. 246, 13–14 (1973).

    Article  CAS  Google Scholar 

  10. Nestell, J. E., Scoles, K. J. & Christy, R. W. Optical conductivity of amorphous Ta and β‐Ta films. J. Appl. Phys. 53, 8993–8998 (1982).

    Article  CAS  Google Scholar 

  11. Kim, Y. W., Lin, H. M. & Kelly, T. F. Amorphous solidification of pure metals in submicron spheres. Acta Metall. 37, 247–255 (1989).

    Article  CAS  Google Scholar 

  12. Suslick, K. S., Choe, S.-B., Cichowlas, A. A. & Grinstaff, M. W. Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991).

    Article  CAS  Google Scholar 

  13. Zhao, R. et al. A facile strategy to produce monatomic tantalum metallic glass. Appl. Phys. Lett. 117, 131903 (2020).

    Article  CAS  Google Scholar 

  14. Lee, M. C., Kendall, J. M. & Johnson, W. L. Spheres of the metallic glass Au55Pb22.5Sb22.5 and their surface characteristics. Appl. Phys. Lett. 40, 382–384 (1982).

    Article  CAS  Google Scholar 

  15. Herlach, D. M., Cochrane, R. F., Egry, I., Fecht, H. J. & Greer, A. L. Containerless processing in the study of metallic melts and their solidification. Int. Mater. Rev. 38, 273–347 (1993).

    Article  CAS  Google Scholar 

  16. Kui, H., Greer, A. L. & Turnbull, D. Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 45, 615–616 (1984).

    Article  CAS  Google Scholar 

  17. Nishiyama, N. et al. The world’s biggest glassy alloy ever made. Intermetallics 30, 19–24 (2012).

    Article  CAS  Google Scholar 

  18. Castellero, A. et al. Improvement of the glass-forming ability of Zr55Cu30Al10Ni5 and Cu47Ti34Zr11Ni8 alloys by electro-deoxidation of the melts. Scr. Mater. 55, 87–90 (2006).

    Article  CAS  Google Scholar 

  19. Yang, B. J., Lu, W. Y., Zhang, J. L., Wang, J. Q. & Ma, E. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses. Sci. Rep. 7, 11053 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, X. H., Johnson, W. L. & Rhim, W. K. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr–Ti–Cu–Ni–Al alloy. Mater. Trans. JIM 38, 473–477 (1997).

    Article  CAS  Google Scholar 

  21. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y. H., Fujita, T., Aji, D. P., Matsuura, M. & Chen, M. W. Structural origins of Johari–Goldstein relaxation in a metallic glass. Nat. Commun. 5, 3238 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Nagata, S., Ogino, M. & Taniguchi, S. Electrical resistivity of thin metal films vapor-quenched at 77 K. Cu, Ag, Au, Ni, Pd, and Pt. Phys. Status Solidi A 102, 711–717 (1987).

    Article  CAS  Google Scholar 

  24. Amendola, V. & Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Liang, S. X., Zhang, L. C., Reichenberger, S. & Barcikowski, S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys. Chem. Chem. Phys. 23, 11121–11154 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Shih, C. Y. et al. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih, C.-Y. et al. Limited elemental mixing in nanoparticles generated by ultrashort pulse laser ablation of AgCu bilayer thin films in a liquid environment: atomistic modeling and experiments. J. Phys. Chem. C 125, 2132–2155 (2021).

    Article  CAS  Google Scholar 

  28. Jeon, S. et al. Reversible disorder–order transitions in atomic crystal nucleation. Science 371, 498–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Ashkenazy, Y. & Averback, R. S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals. Acta Mater. 58, 524–530 (2010).

    Article  CAS  Google Scholar 

  30. Tang, C. & Harrowell, P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nat. Mater. 12, 507–511 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. An, Q. et al. Synthesis of single-component metallic glasses by thermal spray of nanodroplets on amorphous substrates. Appl. Phys. Lett. 100, 041909 (2012).

    Article  Google Scholar 

  32. An, S. et al. Ultrasmall nanoparticles inducing order-to-disorder transition. Phys. Rev. B 98, 134101 (2018).

    Article  CAS  Google Scholar 

  33. Johnson, W. L. Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42–56 (1999).

    Article  CAS  Google Scholar 

  34. Schroers, J., Wu, Y., Busch, R. & Johnson, W. L. Transition from nucleation controlled to growth controlled crystallization in Pd43Ni10Cu27P20 melts. Acta Mater. 49, 2773–2781 (2001).

    Article  CAS  Google Scholar 

  35. Turnbull, D. & Cech, R. E. Microscopic observation of the solidification of small metal droplets. J. Appl. Phys. 21, 804–810 (1950).

    Article  Google Scholar 

  36. Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950).

    Article  CAS  Google Scholar 

  37. Singh, S., Ediger, M. D. & de Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 12, 139–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, Y., Concustell, A. & Greer, A. L. Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nat. Rev. Mater. 1, 16039 (2016).

    Article  CAS  Google Scholar 

  39. Sheng, H. W., Ma, E. & Kramer, M. J. Relating dynamic properties to atomic structure in metallic glasses. JOM 64, 856–881 (2012).

    Article  CAS  Google Scholar 

  40. Frank, F. C. Supercooling of liquids. Proc. R. Soc. A 215, 43–46 (1952).

    CAS  Google Scholar 

  41. Lee, G. W. et al. Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Hirata, A. et al. Geometric frustration of icosahedron in metallic glasses. Science 341, 376–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Shen, Y. T., Kim, T. H., Gangopadhyay, A. K. & Kelton, K. F. Icosahedral order, frustration, and the glass transition: evidence from time-dependent nucleation and supercooled liquid structure studies. Phys. Rev. Lett. 102, 057801 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kelton, K. F. et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  46. Olsson, P. A. Transverse resonant properties of strained gold nanowires. J. Appl. Phys. 108, 034318 (2010).

    Article  Google Scholar 

  47. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  48. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  CAS  Google Scholar 

  49. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  Google Scholar 

  50. Goodrich, C. P., Liu, A. J. & Nagel, S. R. Solids between the mechanical extremes of order and disorder. Nat. Phys. 10, 578–581 (2014).

    Article  CAS  Google Scholar 

  51. Auer, S. & Frenkel, D. Numerical prediction of absolute crystallization rates in hard-sphere colloids. J. Chem. Phys. 120, 3015–3029 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Major Project of Basic and Applied Basic Research, China (grant number 2019B030302010 (H.-Y.B.)), the National Natural Science Foundation of China (grant numbers 52192601 (H.-Y.B.), 52192602 (H.-Y.B.), 52071222 (H.-B.K.), 61888102 (W.-H.W.), 11790291 (W.-H.W.), 22172003 (J.Z.), 52001219 (X.T.), 52301214 (H.-P.Z.) and 52130108 (B.-S.S.)) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000 (W.-H.W.)). We acknowledge the computational resource provided by the Platform for Data-Driven Computational Materials Discovery of Songshan Lake Materials Laboratory. We acknowledge M.-J. Zou and X.-L. Ma of the Bay Area Centre for Electron Microscopy at Songshan Lake Materials Laboratory for the use of the double spherical aberration-corrected Thermo Fisher Spectra 300 instrument, and the Electron Microscopy Laboratory at Peking University for the use of aberration-corrected Titan3 Themis G2 200 instrument.

Author information

Authors and Affiliations

Authors

Contributions

H.-Y.B. and W.-H.W. supervised the work. X.T., W.-H.W., J.Z. and H.-Y.B. designed the experiments. Y.-E.Z. and X.T. operated the laser ablation. X.T., Y.-E.Z., G.W., Z.L., Y. Zhang and J.Z. carried out the electron microscopy experiments. Y.-E.Z. performed the XPS tests. B.-S.S., H.-P.Z., Z.L., J.Z., H.-Y.B. and W.-H.W. performed the modelling and simulations. H.-Y.B., X.T., H.-P.Z., B.-S.S. and J.Z. wrote the manuscript. H.-Y.B. and X.T. responded to the reviewers’ comments. B.Z., Y.-H.L., Y. Zhao and H.-B.K. participated in discussions. All of the authors contributed to the analysis and interpretation of the data.

Corresponding authors

Correspondence to Hai-Bo Ke, Jihan Zhou or Hai-Yang Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Howard Sheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Notes, Tables 1–3 and caption for Supplementary Video 1.

Supplementary Video 1

The devitrification process of amorphous Au can be observed using HR-TEM in situ, during which crystallization occurred epitaxially from the lattice of the crystal Au particle. Some frames of the video are extracted and displayed in Fig. 2a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Zhang, YE., Shang, BS. et al. Breaking the vitrification limitation of monatomic metals. Nat. Mater. 23, 1193–1199 (2024). https://doi.org/10.1038/s41563-024-01967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01967-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing