Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically precise inorganic helices with a programmable irrational twist

Abstract

Helicity in solids often arises from the precise ordering of cooperative intra- and intermolecular interactions unique to natural, organic or molecular systems. This exclusivity limited the realization of helicity and its ensuing properties in dense inorganic solids. Here we report that Ga atoms in GaSeI, a representative III–VI–VII one-dimensional (1D) van der Waals crystal, manifest the rare Boerdijk–Coxeter helix motif. This motif is a non-repeating geometric pattern characterized by 1D face-sharing tetrahedra whose adjacent vertices are rotated by an irrational angle. Using InSeI and GaSeI, we show that the modularity of 1D van der Waals lattices accommodates the systematic twisting of a periodic tetrahelix with a 41 screw axis in InSeI to an infinitely extending Boerdijk–Coxeter helix in GaSeI. GaSeI crystals are non-centrosymmetric, optically active and exfoliable to a single chain. These results present a materials platform towards understanding the origin and physical manifestation of aperiodic helicity in low-dimensional solids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Helices possessing rational and irrational twist angles.
Fig. 2: Synthesis and single-crystal structure of GaSeI.
Fig. 3: Microstructure and nanoscale morphology of unbundled GaSI crystals.
Fig. 4: Hallmarks of the B-C helix geometry and signatures of B-C helicity in GaSeI.
Fig. 5: B-C helix parameters and origin of B-C helicity in GaSeI.
Fig. 6: Optical spectroscopy of GaSeI microcrystallites.

Similar content being viewed by others

Data availability

Crystallographic data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif (CCDC deposition no. 2360595). All other data supporting the findings of this study are available within the Article and its Supplementary Information. Any additional material is available from the corresponding author upon reasonable request.

References

  1. Moser, H. E. & Dervan, P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238, 645–650 (1987).

  2. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hirschberg, J. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

  5. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. Chang, G. Q. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article  PubMed  CAS  Google Scholar 

  7. Liu, Y. Z., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20, 638–644 (2021).

  8. Peng, B., Murakami, S., Monserrat, B. & Zhang, T. Degenerate topological line surface phonons in quasi-1D double helix crystal SnIP. NPJ Comput. Mater. 7, 195 (2021).

  9. Bierman, M. J. et al. Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).

    Article  PubMed  CAS  Google Scholar 

  11. Zhu, J. et al. Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3, 477–481 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. Gao, P. X. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, L. M. et al. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14, 6418–6423 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Pfister, D. et al. Inorganic double helices in semiconducting SnIP. Adv. Mater. 28, 9783–9791 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Reiter, F. et al. SnBrP-A SnIP-type representative in the Sn–Br–P system. Z. Anorg. Allg. Chem. 648, e202100347 (2022).

    Article  CAS  Google Scholar 

  17. Müller, U. Die symmetrie von Spiralketten. Acta Crystallogr. Sect. B 73, 443–452 (2017).

    Article  Google Scholar 

  18. Bette, S. et al. Corrosion of heritage objects: collagen‐like triple helix found in the calcium acetate hemihydrate crystal structure. Angew. Chem. Int. Ed. 59, 9438–9442 (2020).

    Article  CAS  Google Scholar 

  19. Xiao, Q. et al. A metal–organic framework with rod secondary building unit based on the Boerdijk–Coxeter helix. Chem. Commun. 52, 11543–11546 (2016).

    Article  CAS  Google Scholar 

  20. Hartl, H. et al. [(C6H5)4P]1∞[Cu3I4]—the first compound with a helical chain of face-sharing tetrahedra as a structural element. Angew. Chem. Int. Ed. 33, 1841–1842 (1994).

  21. Berisio, R., Vitagliano, L., Mazzarella, L. & Zagari, A. Crystal structure of the collagen triple helix model [(Pro–Pro–Gly)10]3. Protein Sci. 11, 262–270 (2002).

  22. Zheng, C., Hoffmann, R. & Nelson, D. R. A helical face-sharing tetrahedron chain with irrational twist, stella-quadrangula, and related matters. J. Am. Chem. Soc. 112, 3784–3791 (1990).

  23. Sadoc, J. F. & Rivier, N. Boerdijk–Coxeter helix and biological helices. Eur. Phys. J. B 12, 309–318 (1999).

  24. Sadoc, J. F. & Rivier, N. Boerdijk–Coxeter helix and biological helices as quasicrystals. Mater. Sci. Eng. A 294–296, 397–400 (2000).

  25. Zhu, Y. H. et al. Chiral gold nanowires with Boerdijk–Coxeter–Bernal structure. J. Am. Chem. Soc. 136, 12746–12752 (2014).

    Article  PubMed  CAS  Google Scholar 

  26. Lord, E. A., Mackay, A. L. & Ranganathan, S. New Geometries for New Materials (Cambridge Univ. Press, 2006).

  27. Fuller, R. B. Synergetics: Explorations in the Geometry of Thinking (Estate of R. Buckminster Fuller, 1982).

  28. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 7, 177–187 (2013).

  29. Hu, R. & Tian, Z. Direct observation of phonon Anderson localization in Si/Ge aperiodic superlattices. Phys. Rev. B 103, 045304 (2021).

  30. Silva, J., Vasconcelos, M. S., Anselmo, D. H. A. L. & Mello, V. D. Phononic topological states in 1D quasicrystals. J. Phys. Condens. Matter 31, 505405 (2019).

  31. Balandin, A. A. et al. One-dimensional van der Waals quantum materials. Mater. Today 55, 74–91 (2022).

    Article  Google Scholar 

  32. Sawitzki, G. et al. Crystal structures of InTeI and InSeI. Mater. Res. Bull. 15, 753–762 (1980).

    Article  CAS  Google Scholar 

  33. Kniep, R. et al. Phasenbeziehungen und intermediäre Verbindungen in Systemen GaX3–Ga2S3 und InX3–In2S3 (X = Cl, Br, I)/Phase relations and intermediate compounds in systems GaX3–Ga2S3 and InX3–In2S3 (X = Cl, Br, I). Z. Naturforsch. B 40, 26–31 (1985).

    Article  Google Scholar 

  34. Jiang, S. et al. Computational prediction of a novel 1D InSeI nanochain with high stability and promising wide-bandgap properties. Phys. Chem. Chem. Phys. 22, 27441–27449 (2020).

    Article  PubMed  CAS  Google Scholar 

  35. Chen, W. et al. Anisotropic correlation between the piezoelectricity and anion-polarizability difference in 2D phosphorene-type ternary GaXY (X = Se, Te; Y = F, Cl, Br, I) monolayers. J. Mater. Sci. 56, 8024–8036 (2021).

    Article  CAS  Google Scholar 

  36. Sasmito, S. A., Anshory, M, Jihad, I. & Absor, M. A. U. Reversible spin textures with giant spin splitting in two-dimensional GaXY (X = Se, Te; Y= Cl, Br, I) compounds for a persistent spin helix. Phys. Rev. B 104, 115145 (2021).

  37. Zhang, S.-H. & Liu, B.-G. A controllable robust multiferroic GaTeCl monolayer with colossal 2D ferroelectricity and desirable multifunctionality. Nanoscale 10, 5990–5996 (2018).

  38. Cordova, D. L. M. et al. Sensitive thermochromic behavior of InSeI, a highly anisotropic and tubular 1D van der Waals Crystal. Adv. Mater. 36, 2312597 (2024).

    Article  CAS  Google Scholar 

  39. Zhou, Y. et al. Higher-dimensional spin selectivity in chiral crystals. Preprint at https://arxiv.org/abs/2305.18637v1 (2023).

  40. Zhao, S. et al. Chirality-induced spin splitting in 1D InSeI. Appl. Phys. Lett. 123, 172404 (2023).

    Article  CAS  Google Scholar 

  41. Choi, K. H. et al. One-dimensional van der Waals material InSeI with large band-gap for optoelectronic applications. J. Alloy Compd. 927, 166995 (2022).

    Article  CAS  Google Scholar 

  42. Pielmeier, M. R., Karttunen, A. J. & Nilges, T. Toward atomic-scale inorganic double helices via carbon nanotube matrices—induction of chirality to carbon nanotubes. J. Phys. Chem. C 124, 13338–13347 (2020).

  43. Enkhbayar, P., Damdinsuren, S., Osaki, M. & Matsushima, N. HELFIT: helix fitting by a total least squares method. Comput. Biol. Chem. 32, 307–310 (2008).

  44. Lucas, A. A. & Lambin, P. Diffraction by DNA, carbon nanotubes and other helical nanostructures. Rep. Prog. Phys. 68, 1181–1249 (2005).

  45. Troyanov, S. I., Krahl, T. & Kemnitz, E. Crystal structures of GaX3 (X = Cl, Br, I) and AlI3. Z. Kristallogr. Crystal. Mater. 219, 88–92 (2004).

  46. Kuhn, A., Chevy, A. & Chevalier, R. Crystal structure and interatomic distances in GaSe. Phys. Status Solidi A 31, 469–475 (1975).

  47. Bonacina, L., Brevet, P.-F., Finazzi, M. & Celebrano, M. Harmonic generation at the nanoscale. J. Appl. Phys. 127, 230901 (2020).

  48. Gautier, R., Klingsporn, J. M., Van Duyne, R. P. & Poeppelmeier, K. R. Optical activity from racemates. Nat. Mater. 15, 591–592 (2016).

  49. Purschke, D. N. et al. Ultrafast photoconductivity and terahertz vibrational dynamics in double‐helix SnIP nanowires. Adv. Mater. 33, 2100978 (2021).

    Article  CAS  Google Scholar 

  50. Mathur, N. et al. Atomically sharp internal interface in a chiral weyl semimetal nanowire. Nano Lett. 23, 2695–2702 (2023).

    Article  PubMed  CAS  Google Scholar 

  51. APEX3 Version 2014.11-0 (Bruker AXS, 2014).

  52. APEX4 Version 2021.4-0 (Bruker AXS, 2021).

  53. SAINT Version 8.40B (Bruker AXS, 2013).

  54. SADABS, Version 2016/2 (Bruker AXS, 2016).

  55. SHELXTL, Version 2019/1 (Bruker AXS, 2019).

  56. Dolomanov, O. V. et al. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  57. Prince, E. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables (Springer Science & Business Media, 2004).

  58. Flack, H. On enantiomorph-polarity estimation. Acta Crystallogr. Sect. A 39, 876–881 (1983).

    Article  Google Scholar 

  59. Hooft, R. W., Straver, L. H. & Spek, A. L. Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Crystallogr. 41, 96–103 (2008).

Download references

Acknowledgements

We thank the UC Irvine Department of Chemistry X-ray crystallography facility for the instrumental support on the single-crystal diffraction experiments. T.A.K. and J.Z. acknowledge the UC Irvine School of Physical Sciences and Department of Chemistry for funding. We also thank the UC Irvine Laser Spectroscopy Labs. D.A.F. acknowledges support through NIH GM R21-GM141774. Several aspects of this work were performed at the UC Irvine Materials Research Institute (IMRI). Facilities and instrumentation at IMRI are supported, in part, by the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center grant number DMR-2011967. XPS was performed using instrumentation funded in part by the National Science Foundation Major Research Instrumentation Program under grant number CHE-1338173. AFM was performed using an Anton Paar Tosca 400 AFM on loan to IMRI from Anton Paar GmbH.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.Q.A. Methodology: D.L.M.C., K.C., G.S., D.A.F. and M.Q.A. Investigation: D.L.M.C., K.C., T.A.K., T.A., D.K., D.L. and D.A.F. Visualization: D.L.M.C., K.C., D.A.F. and M.Q.A. Funding acquisition: M.Q.A. Project administration: M.Q.A. Supervision: M.Q.A. Writing—original draft: D.L.M.C., K.C. and M.Q.A. Writing—review and editing: D.L.M.C., K.C., T.A.K., T.A., D.K., G.S., D.L., J.Z., D.A.F. and M.Q.A.

Corresponding author

Correspondence to Maxx Q. Arguilla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jan Ingo Flege, Tom Nilges, Binghai Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text A–G, Figs. 1–23, Tables 1–20 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordova, D.L.M., Chua, K., Kerr, T.A. et al. Atomically precise inorganic helices with a programmable irrational twist. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01963-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing