Abstract
Helicity in solids often arises from the precise ordering of cooperative intra- and intermolecular interactions unique to natural, organic or molecular systems. This exclusivity limited the realization of helicity and its ensuing properties in dense inorganic solids. Here we report that Ga atoms in GaSeI, a representative III–VI–VII one-dimensional (1D) van der Waals crystal, manifest the rare Boerdijk–Coxeter helix motif. This motif is a non-repeating geometric pattern characterized by 1D face-sharing tetrahedra whose adjacent vertices are rotated by an irrational angle. Using InSeI and GaSeI, we show that the modularity of 1D van der Waals lattices accommodates the systematic twisting of a periodic tetrahelix with a 41 screw axis in InSeI to an infinitely extending Boerdijk–Coxeter helix in GaSeI. GaSeI crystals are non-centrosymmetric, optically active and exfoliable to a single chain. These results present a materials platform towards understanding the origin and physical manifestation of aperiodic helicity in low-dimensional solids.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Crystallographic data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_request/cif (CCDC deposition no. 2360595). All other data supporting the findings of this study are available within the Article and its Supplementary Information. Any additional material is available from the corresponding author upon reasonable request.
References
Moser, H. E. & Dervan, P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238, 645–650 (1987).
Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).
Hirschberg, J. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).
Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).
Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).
Chang, G. Q. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).
Liu, Y. Z., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20, 638–644 (2021).
Peng, B., Murakami, S., Monserrat, B. & Zhang, T. Degenerate topological line surface phonons in quasi-1D double helix crystal SnIP. NPJ Comput. Mater. 7, 195 (2021).
Bierman, M. J. et al. Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008).
Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).
Zhu, J. et al. Formation of chiral branched nanowires by the Eshelby twist. Nat. Nanotechnol. 3, 477–481 (2008).
Gao, P. X. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005).
Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).
Zhang, L. M. et al. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14, 6418–6423 (2014).
Pfister, D. et al. Inorganic double helices in semiconducting SnIP. Adv. Mater. 28, 9783–9791 (2016).
Reiter, F. et al. SnBrP-A SnIP-type representative in the Sn–Br–P system. Z. Anorg. Allg. Chem. 648, e202100347 (2022).
Müller, U. Die symmetrie von Spiralketten. Acta Crystallogr. Sect. B 73, 443–452 (2017).
Bette, S. et al. Corrosion of heritage objects: collagen‐like triple helix found in the calcium acetate hemihydrate crystal structure. Angew. Chem. Int. Ed. 59, 9438–9442 (2020).
Xiao, Q. et al. A metal–organic framework with rod secondary building unit based on the Boerdijk–Coxeter helix. Chem. Commun. 52, 11543–11546 (2016).
Hartl, H. et al. [(C6H5)4P]1∞[Cu3I4]—the first compound with a helical chain of face-sharing tetrahedra as a structural element. Angew. Chem. Int. Ed. 33, 1841–1842 (1994).
Berisio, R., Vitagliano, L., Mazzarella, L. & Zagari, A. Crystal structure of the collagen triple helix model [(Pro–Pro–Gly)10]3. Protein Sci. 11, 262–270 (2002).
Zheng, C., Hoffmann, R. & Nelson, D. R. A helical face-sharing tetrahedron chain with irrational twist, stella-quadrangula, and related matters. J. Am. Chem. Soc. 112, 3784–3791 (1990).
Sadoc, J. F. & Rivier, N. Boerdijk–Coxeter helix and biological helices. Eur. Phys. J. B 12, 309–318 (1999).
Sadoc, J. F. & Rivier, N. Boerdijk–Coxeter helix and biological helices as quasicrystals. Mater. Sci. Eng. A 294–296, 397–400 (2000).
Zhu, Y. H. et al. Chiral gold nanowires with Boerdijk–Coxeter–Bernal structure. J. Am. Chem. Soc. 136, 12746–12752 (2014).
Lord, E. A., Mackay, A. L. & Ranganathan, S. New Geometries for New Materials (Cambridge Univ. Press, 2006).
Fuller, R. B. Synergetics: Explorations in the Geometry of Thinking (Estate of R. Buckminster Fuller, 1982).
Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photonics 7, 177–187 (2013).
Hu, R. & Tian, Z. Direct observation of phonon Anderson localization in Si/Ge aperiodic superlattices. Phys. Rev. B 103, 045304 (2021).
Silva, J., Vasconcelos, M. S., Anselmo, D. H. A. L. & Mello, V. D. Phononic topological states in 1D quasicrystals. J. Phys. Condens. Matter 31, 505405 (2019).
Balandin, A. A. et al. One-dimensional van der Waals quantum materials. Mater. Today 55, 74–91 (2022).
Sawitzki, G. et al. Crystal structures of InTeI and InSeI. Mater. Res. Bull. 15, 753–762 (1980).
Kniep, R. et al. Phasenbeziehungen und intermediäre Verbindungen in Systemen GaX3–Ga2S3 und InX3–In2S3 (X = Cl, Br, I)/Phase relations and intermediate compounds in systems GaX3–Ga2S3 and InX3–In2S3 (X = Cl, Br, I). Z. Naturforsch. B 40, 26–31 (1985).
Jiang, S. et al. Computational prediction of a novel 1D InSeI nanochain with high stability and promising wide-bandgap properties. Phys. Chem. Chem. Phys. 22, 27441–27449 (2020).
Chen, W. et al. Anisotropic correlation between the piezoelectricity and anion-polarizability difference in 2D phosphorene-type ternary GaXY (X = Se, Te; Y = F, Cl, Br, I) monolayers. J. Mater. Sci. 56, 8024–8036 (2021).
Sasmito, S. A., Anshory, M, Jihad, I. & Absor, M. A. U. Reversible spin textures with giant spin splitting in two-dimensional GaXY (X = Se, Te; Y= Cl, Br, I) compounds for a persistent spin helix. Phys. Rev. B 104, 115145 (2021).
Zhang, S.-H. & Liu, B.-G. A controllable robust multiferroic GaTeCl monolayer with colossal 2D ferroelectricity and desirable multifunctionality. Nanoscale 10, 5990–5996 (2018).
Cordova, D. L. M. et al. Sensitive thermochromic behavior of InSeI, a highly anisotropic and tubular 1D van der Waals Crystal. Adv. Mater. 36, 2312597 (2024).
Zhou, Y. et al. Higher-dimensional spin selectivity in chiral crystals. Preprint at https://arxiv.org/abs/2305.18637v1 (2023).
Zhao, S. et al. Chirality-induced spin splitting in 1D InSeI. Appl. Phys. Lett. 123, 172404 (2023).
Choi, K. H. et al. One-dimensional van der Waals material InSeI with large band-gap for optoelectronic applications. J. Alloy Compd. 927, 166995 (2022).
Pielmeier, M. R., Karttunen, A. J. & Nilges, T. Toward atomic-scale inorganic double helices via carbon nanotube matrices—induction of chirality to carbon nanotubes. J. Phys. Chem. C 124, 13338–13347 (2020).
Enkhbayar, P., Damdinsuren, S., Osaki, M. & Matsushima, N. HELFIT: helix fitting by a total least squares method. Comput. Biol. Chem. 32, 307–310 (2008).
Lucas, A. A. & Lambin, P. Diffraction by DNA, carbon nanotubes and other helical nanostructures. Rep. Prog. Phys. 68, 1181–1249 (2005).
Troyanov, S. I., Krahl, T. & Kemnitz, E. Crystal structures of GaX3 (X = Cl, Br, I) and AlI3. Z. Kristallogr. Crystal. Mater. 219, 88–92 (2004).
Kuhn, A., Chevy, A. & Chevalier, R. Crystal structure and interatomic distances in GaSe. Phys. Status Solidi A 31, 469–475 (1975).
Bonacina, L., Brevet, P.-F., Finazzi, M. & Celebrano, M. Harmonic generation at the nanoscale. J. Appl. Phys. 127, 230901 (2020).
Gautier, R., Klingsporn, J. M., Van Duyne, R. P. & Poeppelmeier, K. R. Optical activity from racemates. Nat. Mater. 15, 591–592 (2016).
Purschke, D. N. et al. Ultrafast photoconductivity and terahertz vibrational dynamics in double‐helix SnIP nanowires. Adv. Mater. 33, 2100978 (2021).
Mathur, N. et al. Atomically sharp internal interface in a chiral weyl semimetal nanowire. Nano Lett. 23, 2695–2702 (2023).
APEX3 Version 2014.11-0 (Bruker AXS, 2014).
APEX4 Version 2021.4-0 (Bruker AXS, 2021).
SAINT Version 8.40B (Bruker AXS, 2013).
SADABS, Version 2016/2 (Bruker AXS, 2016).
SHELXTL, Version 2019/1 (Bruker AXS, 2019).
Dolomanov, O. V. et al. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).
Prince, E. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables (Springer Science & Business Media, 2004).
Flack, H. On enantiomorph-polarity estimation. Acta Crystallogr. Sect. A 39, 876–881 (1983).
Hooft, R. W., Straver, L. H. & Spek, A. L. Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Crystallogr. 41, 96–103 (2008).
Acknowledgements
We thank the UC Irvine Department of Chemistry X-ray crystallography facility for the instrumental support on the single-crystal diffraction experiments. T.A.K. and J.Z. acknowledge the UC Irvine School of Physical Sciences and Department of Chemistry for funding. We also thank the UC Irvine Laser Spectroscopy Labs. D.A.F. acknowledges support through NIH GM R21-GM141774. Several aspects of this work were performed at the UC Irvine Materials Research Institute (IMRI). Facilities and instrumentation at IMRI are supported, in part, by the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center grant number DMR-2011967. XPS was performed using instrumentation funded in part by the National Science Foundation Major Research Instrumentation Program under grant number CHE-1338173. AFM was performed using an Anton Paar Tosca 400 AFM on loan to IMRI from Anton Paar GmbH.
Author information
Authors and Affiliations
Contributions
Conceptualization: M.Q.A. Methodology: D.L.M.C., K.C., G.S., D.A.F. and M.Q.A. Investigation: D.L.M.C., K.C., T.A.K., T.A., D.K., D.L. and D.A.F. Visualization: D.L.M.C., K.C., D.A.F. and M.Q.A. Funding acquisition: M.Q.A. Project administration: M.Q.A. Supervision: M.Q.A. Writing—original draft: D.L.M.C., K.C. and M.Q.A. Writing—review and editing: D.L.M.C., K.C., T.A.K., T.A., D.K., G.S., D.L., J.Z., D.A.F. and M.Q.A.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks Jan Ingo Flege, Tom Nilges, Binghai Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Text A–G, Figs. 1–23, Tables 1–20 and references.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cordova, D.L.M., Chua, K., Kerr, T.A. et al. Atomically precise inorganic helices with a programmable irrational twist. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01963-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41563-024-01963-4