Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlinear physics of moiré superlattices

Abstract

Nonlinear physics is one of the most important research fields in modern physics and materials science. It offers an unprecedented paradigm for exploring many fascinating physical phenomena and realizing diverse cutting-edge applications inconceivable in the framework of linear processes. Here we review the recent theoretical and experimental progress concerning the nonlinear physics of synthetic quantum moiré superlattices. We focus on the emerging nonlinear electronic, optical and optoelectronic properties of moiré superlattices, including but not limited to the nonlinear anomalous Hall effect, dynamically twistable harmonic generation, nonlinear optical chirality, ultralow-power-threshold optical solitons and spontaneous photogalvanic effect. We also present our perspectives on the future opportunities and challenges in this rapidly progressing field, and highlight the implications for advances in both fundamental physics and technological innovations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of selected moiré physics with an emphasis on nonlinear effects.
Fig. 2: Moiré materials and structures.
Fig. 3: Nonlinear electronics of moiré superlattices.
Fig. 4: Nonlinear photonics of moiré materials.
Fig. 5: Nonlinear optics of moiré structures.
Fig. 6: Nonlinear optoelectronics of moiré superlattices.

Similar content being viewed by others

References

  1. Boyd, R. W. Nonlinear Optics (Academic, 2020).

  2. Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, 1705963 (2018).

    Article  Google Scholar 

  3. Du, Z. Z., Lu, H.-Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).

    Article  Google Scholar 

  4. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).

    Article  Google Scholar 

  6. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Du, L. et al. Moire photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Y. et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature 626, 779–784 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  23. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photon. 14, 663–668 (2020).

    Article  CAS  Google Scholar 

  25. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  Google Scholar 

  27. Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).

    Article  CAS  Google Scholar 

  28. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article  CAS  Google Scholar 

  32. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, F. et al. Coupled ferroelectricity and correlated states in a twisted quadrilayer MoS2 moiré superlattice. Chin. Phys. Lett. 40, 047303 (2023).

    Article  Google Scholar 

  35. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Rosendo López, M., Peñaranda, F., Christensen, J. & San-Jose, P. Flat bands in magic-angle vibrating plates. Phys. Rev. Lett. 125, 214301 (2020).

    Article  PubMed  Google Scholar 

  38. Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, W. et al. Moiré fringe induced gauge field in photonics. Phys. Rev. Lett. 125, 203901 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Gardezi, S. M., Pirie, H., Carr, S., Dorrell, W. & Hoffman, J. E. Simulating twistronics in acoustic metamaterials. 2D Mater. 8, 031002 (2021).

    Article  CAS  Google Scholar 

  41. Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Oudich, M. et al. Photonic analog of bilayer graphene. Phys. Rev. B 103, 214311 (2021).

    Article  CAS  Google Scholar 

  43. Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Carr, S., Fang, S., Jarillo-Herrero, P. & Kaxiras, E. Pressure dependence of the magic twist angle in graphene superlattices. Phys. Rev. B 98, 085144 (2018).

    Article  CAS  Google Scholar 

  45. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  46. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  PubMed  Google Scholar 

  47. Zhang, C.-P. et al. Giant nonlinear Hall effect in strained twisted bilayer graphene. Phys. Rev. B 106, L041111 (2022).

    Article  CAS  Google Scholar 

  48. Hu, J.-X., Zhang, C.-P., Xie, Y.-M. & Law, K. T. Nonlinear Hall effects in strained twisted bilayer WSe2. Commun. Phys. 5, 255 (2022).

    Article  CAS  Google Scholar 

  49. Chakraborty, A. et al. Nonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer graphene. 2D Mater. 9, 045020 (2022).

    Article  CAS  Google Scholar 

  50. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    Article  CAS  Google Scholar 

  51. Huang, M. et al. Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene. Phys. Rev. Lett. 131, 066301 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765–770 (2022).

    Article  CAS  Google Scholar 

  53. Zhong, J. et al. Effective manipulation of a colossal second-order transverse response in an electric-field-tunable graphene moiré system. Nano Lett. 24, 5791–5798 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, F. et al. Giant correlated gap and possible room-temperature correlated states in twisted bilayer MoS2. Phys. Rev. Lett. 131, 256201 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 18, 861–866 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Duan, J. et al. Giant second-order nonlinear Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 129, 186801 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Du, L. et al. Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. Appl. Phys. Lett. 111, 263106 (2017).

    Article  Google Scholar 

  61. Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong, H. et al. Twist phase matching in two-dimensional materials. Phys. Rev. Lett. 131, 233801 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, F. et al. Tunable second harmonic generation in twisted bilayer graphene. Matter 3, 1361–1376 (2020).

    Article  Google Scholar 

  64. Du, L., Dai, Y. & Sun, Z. Twisting for tunable nonlinear optics. Matter 3, 987–988 (2020).

    Article  Google Scholar 

  65. Hsu, W.-T. et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951–2958 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Yuan, Y. et al. Probing the twist-controlled interlayer coupling in artificially stacked transition metal dichalcogenide bilayers by second-harmonic generation. ACS Nano 17, 17897–17907 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, B. et al. Three-dimensional nonlinear optical materials from twisted two-dimensional van der Waals interfaces. Nat. Photon. 18, 91–98 (2024).

    Article  CAS  Google Scholar 

  68. Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).

    Article  CAS  Google Scholar 

  69. Zhang, S., Lu, X. & Liu, J. Correlated insulators, density wave states, and their nonlinear optical response in magic-angle twisted bilayer graphene. Phys. Rev. Lett. 128, 247402 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Ha, S. et al. Enhanced third-harmonic generation by manipulating the twist angle of bilayer graphene. Light Sci. Appl. 10, 19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Y. et al. Chirality logic gates. Sci. Adv. 8, eabq8246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photon. 16, 411–421 (2022).

    Article  CAS  Google Scholar 

  73. Patel, H., Huang, L., Kim, C.-J., Park, J. & Graham, M. W. Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 10, 1445 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ikeda, T. N. High-order nonlinear optical response of a twisted bilayer graphene. Phys. Rev. Res. 2, 032015 (2020).

    Article  CAS  Google Scholar 

  75. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Park, H. et al. Dipole ladders with large Hubbard interaction in a moiré exciton lattice. Nat. Phys. 19, 1286–1292 (2023).

    Article  CAS  Google Scholar 

  78. Yu, L. et al. Observation of quadrupolar and dipolar excitons in a semiconductor heterotrilayer. Nat. Mater. 22, 1485–1491 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, L. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 11, 5888 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Du, L. New excitons in multilayer 2D materials. Nat. Rev. Phys. 6, 157–159 (2024).

    Article  Google Scholar 

  83. Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Kartashov, Y. V., Ye, F., Konotop, V. V. & Torner, L. Multifrequency solitons in commensurate–incommensurate photonic moiré lattices. Phys. Rev. Lett. 127, 163902 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Arkhipova, A. A. et al. Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys. Rev. Lett. 130, 083801 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, L., Zhang, W. & Zhang, X. Moiré quasibound states in the continuum. Phys. Rev. Lett. 128, 253901 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, Z. N. et al. Designing a transition photonic band with a moiré synthetic sphere. Phys. Rev. Appl. 19, 044054 (2023).

    Article  CAS  Google Scholar 

  88. Liu, Y. et al. Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photon. Res. 10, 2056–2065 (2022).

    Article  CAS  Google Scholar 

  89. Liu, S. et al. Moiré metasurfaces for dynamic beamforming. Sci. Adv. 8, eabo1511 (2022).

  90. Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron–electron interactions in twisted bilayer graphene. Phys. Rev. Res. 4, 013164 (2022).

    Article  CAS  Google Scholar 

  91. Kaplan, D., Holder, T. & Yan, B. Twisted photovoltaics at terahertz frequencies from momentum shift current. Phys. Rev. Res. 4, 013209 (2022).

    Article  CAS  Google Scholar 

  92. Arora, A., Kong, J. F. & Song, J. C. W. Strain-induced large injection current in twisted bilayer graphene. Phys. Rev. B 104, L241404 (2021).

    Article  CAS  Google Scholar 

  93. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    Article  CAS  Google Scholar 

  94. Otteneder, M. et al. Terahertz photogalvanics in twisted bilayer graphene close to the second magic angle. Nano Lett. 20, 7152–7158 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Hubmann, S. et al. Nonlinear intensity dependence of photogalvanics and photoconductance induced by terahertz laser radiation in twisted bilayer graphene close to magic angle. Phys. Rev. Mater. 6, 024003 (2022).

    Article  CAS  Google Scholar 

  96. Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Duan, S. et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nat. Nanotechnol. 18, 867–874 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).

    Article  CAS  Google Scholar 

  100. Harter, J. W., Zhao, Z. Y., Yan, J. Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).

    Article  CAS  Google Scholar 

  102. Zhang, N. J. et al. Angle-resolved transport non-reciprocity and spontaneous symmetry breaking in twisted trilayer graphene. Nat. Mater. 23, 356–362 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022).

    Article  Google Scholar 

  105. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  Google Scholar 

  106. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    Article  PubMed  Google Scholar 

  107. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat. Nanotechnol. 17, 143–147 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Song, T. et al. Spin photovoltaic effect in magnetic van der Waals heterostructures. Sci. Adv. 7, eabg8094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, P. et al. Two-dimensional Thouless pumping of light in photonic moiré lattices. Nat. Commun. 13, 6738 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  PubMed  Google Scholar 

  115. Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liu, C. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge discussion with F. Xia and Y. S. Kivshar. We acknowledge financial support from the National Science Foundation of China (NSFC) (grants 61888102 and 12274447), the National Key Research and Development Program (grants 2021YFA1202900 and 2023YFA1407000), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB0470101), the Academy of Finland (314810, 333982, 336144, 336818, 352780, 352930, 360411 and 353364), the Academy of Finland Flagship Programme (320167, PREIN), ERC (834742), the EU H2020-MSCA-RISE-872049 (IPN-Bio), the Jane and Aatos Erkko foundation and the Technology Industries of Finland centennial foundation (Future Makers 2022), the Air Force Office of Scientific Research (grant FA2386-21-1-4066), the National Science Foundation (grant DMR 2132470) and the Army Research Office (grant W911NF-17-1-0312).

Author information

Authors and Affiliations

Authors

Contributions

L.D. and Z.S. conceived the idea. L.D., Z.H., J.Z., F.Y., H.D., G.Z. and Z.S. led the writing. All authors reviewed and edited the paper before submission.

Corresponding authors

Correspondence to Luojun Du, Guangyu Zhang or Zhipei Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Huang, Z., Zhang, J. et al. Nonlinear physics of moiré superlattices. Nat. Mater. 23, 1179–1192 (2024). https://doi.org/10.1038/s41563-024-01951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01951-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing