Abstract
Nonlinear physics is one of the most important research fields in modern physics and materials science. It offers an unprecedented paradigm for exploring many fascinating physical phenomena and realizing diverse cutting-edge applications inconceivable in the framework of linear processes. Here we review the recent theoretical and experimental progress concerning the nonlinear physics of synthetic quantum moiré superlattices. We focus on the emerging nonlinear electronic, optical and optoelectronic properties of moiré superlattices, including but not limited to the nonlinear anomalous Hall effect, dynamically twistable harmonic generation, nonlinear optical chirality, ultralow-power-threshold optical solitons and spontaneous photogalvanic effect. We also present our perspectives on the future opportunities and challenges in this rapidly progressing field, and highlight the implications for advances in both fundamental physics and technological innovations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Boyd, R. W. Nonlinear Optics (Academic, 2020).
Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, 1705963 (2018).
Du, Z. Z., Lu, H.-Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).
Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).
Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).
Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).
Du, L. et al. Moire photonics and optoelectronics. Science 379, eadg0014 (2023).
Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).
Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).
Wu, Y. et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature 626, 779–784 (2024).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).
Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photon. 14, 663–668 (2020).
Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).
Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).
Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).
Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Wu, F. et al. Coupled ferroelectricity and correlated states in a twisted quadrilayer MoS2 moiré superlattice. Chin. Phys. Lett. 40, 047303 (2023).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).
Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).
Rosendo López, M., Peñaranda, F., Christensen, J. & San-Jose, P. Flat bands in magic-angle vibrating plates. Phys. Rev. Lett. 125, 214301 (2020).
Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).
Wang, W. et al. Moiré fringe induced gauge field in photonics. Phys. Rev. Lett. 125, 203901 (2020).
Gardezi, S. M., Pirie, H., Carr, S., Dorrell, W. & Hoffman, J. E. Simulating twistronics in acoustic metamaterials. 2D Mater. 8, 031002 (2021).
Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).
Oudich, M. et al. Photonic analog of bilayer graphene. Phys. Rev. B 103, 214311 (2021).
Luan, H.-Y., Ouyang, Y.-H., Zhao, Z.-W., Mao, W.-Z. & Ma, R.-M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).
Carr, S., Fang, S., Jarillo-Herrero, P. & Kaxiras, E. Pressure dependence of the magic twist angle in graphene superlattices. Phys. Rev. B 98, 085144 (2018).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Zhang, C.-P. et al. Giant nonlinear Hall effect in strained twisted bilayer graphene. Phys. Rev. B 106, L041111 (2022).
Hu, J.-X., Zhang, C.-P., Xie, Y.-M. & Law, K. T. Nonlinear Hall effects in strained twisted bilayer WSe2. Commun. Phys. 5, 255 (2022).
Chakraborty, A. et al. Nonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer graphene. 2D Mater. 9, 045020 (2022).
Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).
Huang, M. et al. Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene. Phys. Rev. Lett. 131, 066301 (2023).
Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765–770 (2022).
Zhong, J. et al. Effective manipulation of a colossal second-order transverse response in an electric-field-tunable graphene moiré system. Nano Lett. 24, 5791–5798 (2024).
Wu, F. et al. Giant correlated gap and possible room-temperature correlated states in twisted bilayer MoS2. Phys. Rev. Lett. 131, 256201 (2023).
Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).
Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 18, 861–866 (2023).
Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).
He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).
Duan, J. et al. Giant second-order nonlinear Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 129, 186801 (2022).
Du, L. et al. Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. Appl. Phys. Lett. 111, 263106 (2017).
Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).
Hong, H. et al. Twist phase matching in two-dimensional materials. Phys. Rev. Lett. 131, 233801 (2023).
Yang, F. et al. Tunable second harmonic generation in twisted bilayer graphene. Matter 3, 1361–1376 (2020).
Du, L., Dai, Y. & Sun, Z. Twisting for tunable nonlinear optics. Matter 3, 987–988 (2020).
Hsu, W.-T. et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951–2958 (2014).
Yuan, Y. et al. Probing the twist-controlled interlayer coupling in artificially stacked transition metal dichalcogenide bilayers by second-harmonic generation. ACS Nano 17, 17897–17907 (2023).
Kim, B. et al. Three-dimensional nonlinear optical materials from twisted two-dimensional van der Waals interfaces. Nat. Photon. 18, 91–98 (2024).
Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).
Zhang, S., Lu, X. & Liu, J. Correlated insulators, density wave states, and their nonlinear optical response in magic-angle twisted bilayer graphene. Phys. Rev. Lett. 128, 247402 (2022).
Ha, S. et al. Enhanced third-harmonic generation by manipulating the twist angle of bilayer graphene. Light Sci. Appl. 10, 19 (2021).
Zhang, Y. et al. Chirality logic gates. Sci. Adv. 8, eabq8246 (2022).
Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photon. 16, 411–421 (2022).
Patel, H., Huang, L., Kim, C.-J., Park, J. & Graham, M. W. Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 10, 1445 (2019).
Ikeda, T. N. High-order nonlinear optical response of a twisted bilayer graphene. Phys. Rev. Res. 2, 032015 (2020).
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).
Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).
Park, H. et al. Dipole ladders with large Hubbard interaction in a moiré exciton lattice. Nat. Phys. 19, 1286–1292 (2023).
Yu, L. et al. Observation of quadrupolar and dipolar excitons in a semiconductor heterotrilayer. Nat. Mater. 22, 1485–1491 (2023).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).
Zhang, L. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 11, 5888 (2020).
Du, L. New excitons in multilayer 2D materials. Nat. Rev. Phys. 6, 157–159 (2024).
Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).
Kartashov, Y. V., Ye, F., Konotop, V. V. & Torner, L. Multifrequency solitons in commensurate–incommensurate photonic moiré lattices. Phys. Rev. Lett. 127, 163902 (2021).
Arkhipova, A. A. et al. Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys. Rev. Lett. 130, 083801 (2023).
Huang, L., Zhang, W. & Zhang, X. Moiré quasibound states in the continuum. Phys. Rev. Lett. 128, 253901 (2022).
Liu, Z. N. et al. Designing a transition photonic band with a moiré synthetic sphere. Phys. Rev. Appl. 19, 044054 (2023).
Liu, Y. et al. Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photon. Res. 10, 2056–2065 (2022).
Liu, S. et al. Moiré metasurfaces for dynamic beamforming. Sci. Adv. 8, eabo1511 (2022).
Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron–electron interactions in twisted bilayer graphene. Phys. Rev. Res. 4, 013164 (2022).
Kaplan, D., Holder, T. & Yan, B. Twisted photovoltaics at terahertz frequencies from momentum shift current. Phys. Rev. Res. 4, 013209 (2022).
Arora, A., Kong, J. F. & Song, J. C. W. Strain-induced large injection current in twisted bilayer graphene. Phys. Rev. B 104, L241404 (2021).
Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).
Otteneder, M. et al. Terahertz photogalvanics in twisted bilayer graphene close to the second magic angle. Nano Lett. 20, 7152–7158 (2020).
Hubmann, S. et al. Nonlinear intensity dependence of photogalvanics and photoconductance induced by terahertz laser radiation in twisted bilayer graphene close to magic angle. Phys. Rev. Mater. 6, 024003 (2022).
Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).
Duan, S. et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nat. Nanotechnol. 18, 867–874 (2023).
Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).
Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).
Harter, J. W., Zhao, Z. Y., Yan, J. Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).
Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).
Zhang, N. J. et al. Angle-resolved transport non-reciprocity and spontaneous symmetry breaking in twisted trilayer graphene. Nat. Mater. 23, 356–362 (2024).
McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).
Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022).
Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).
Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).
de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).
Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).
Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat. Nanotechnol. 17, 143–147 (2022).
Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).
Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).
Song, T. et al. Spin photovoltaic effect in magnetic van der Waals heterostructures. Sci. Adv. 7, eabg8094 (2021).
Wang, P. et al. Two-dimensional Thouless pumping of light in photonic moiré lattices. Nat. Commun. 13, 6738 (2022).
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).
Liu, C. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022).
Acknowledgements
We acknowledge discussion with F. Xia and Y. S. Kivshar. We acknowledge financial support from the National Science Foundation of China (NSFC) (grants 61888102 and 12274447), the National Key Research and Development Program (grants 2021YFA1202900 and 2023YFA1407000), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB0470101), the Academy of Finland (314810, 333982, 336144, 336818, 352780, 352930, 360411 and 353364), the Academy of Finland Flagship Programme (320167, PREIN), ERC (834742), the EU H2020-MSCA-RISE-872049 (IPN-Bio), the Jane and Aatos Erkko foundation and the Technology Industries of Finland centennial foundation (Future Makers 2022), the Air Force Office of Scientific Research (grant FA2386-21-1-4066), the National Science Foundation (grant DMR 2132470) and the Army Research Office (grant W911NF-17-1-0312).
Author information
Authors and Affiliations
Contributions
L.D. and Z.S. conceived the idea. L.D., Z.H., J.Z., F.Y., H.D., G.Z. and Z.S. led the writing. All authors reviewed and edited the paper before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Du, L., Huang, Z., Zhang, J. et al. Nonlinear physics of moiré superlattices. Nat. Mater. 23, 1179–1192 (2024). https://doi.org/10.1038/s41563-024-01951-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-024-01951-8