Abstract
Recent discoveries of Mott insulating and unconventional superconducting states in twisted bilayer graphene with moiré superlattices have not only reshaped the landscape of ‘twistronics’ but also sparked the rapidly growing fields of moiré photonic and phononic structures. These innovative moiré structures have opened new routes of exploration for classical wave physics, leading to intriguing phenomena and robust control of electromagnetic and mechanical waves. Drawing inspiration from the success of twisted bilayer graphene, this Perspective describes an overarching framework of the emerging moiré photonic and phononic structures that promise novel classical wave devices. We begin with the fundamentals of moiré superlattices, before highlighting recent studies that exploit twist angle and interlayer coupling as new ingredients with which to engineer and tailor the band structures and effective material properties of photonic and phononic structures. Finally, we discuss the future directions and prospects of this emerging area in materials science and wave physics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).
Rozhkov, A. V., Sboychakov, A. O., Rakhmanov, A. L. & Nori, F. Electronic properties of graphene-based bilayer systems. Phys. Rep. 648, 1–104 (2016).
Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).
Moon, P. & Koshino, M. Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013).
Li, H. et al. Thermal conductivity of twisted bilayer graphene. Nanoscale 6, 13402–13408 (2014).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018).
Deng, Y. et al. Magic-angle bilayer phononic graphene. Phys. Rev. B 102, 180304(R) (2020).
Rosendo López, M., Peñaranda, F., Christensen, J. & San-Jose, P. Flat bands in magic-angle vibrating plates. Phys. Rev. Lett. 125, 214301 (2020).
Oudich, M. et al. Photonic analog of bilayer graphene. Phys. Rev. B 103, 214311 (2021).
Gardezi, S. M., Pirie, H., Carr, S., Dorrell, W. & Hoffman, J. E. Simulating twistronics in acoustic metamaterials. 2D Mater. 8, 031002 (2021).
Tang, H. et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci. Appl. 10, 157 (2021).
Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).
Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Correas-Serrano, D., Gomez-Diaz, J. S., Melcon, A. A. & Alù, A. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization. J. Opt. 18, 104006 (2016).
Dai, Z. et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun. 11, 6086 (2020).
Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).
Wang, C. et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020).
Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).
Gomez-Diaz, J. S. & Alù, A. Flatland optics with hyperbolic metasurfaces. ACS Photonics 3, 2211–2224 (2016).
Kotov, O. V. & Lozovik, Yu. E. Hyperbolic hybrid waves and optical topological transitions in few-layer anisotropic metasurfaces. Phys. Rev. B 100, 165424 (2019).
Hu, G., Zheng, C., Ni, J., Qiu, C.-W. & Alù, A. Enhanced light–matter interactions at photonic magic-angle topological transitions. Appl. Phys. Lett. 118, 211101 (2021).
Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).
Zhang, X., Zhong, Y., Low, T., Chen, H. & Lin, X. Emerging chiral optics from chiral interfaces. Phys. Rev. B 103, 195405 (2021).
Stauber, T., Low, T. & Gómez-Santos, G. Chiral response of twisted bilayer graphene. Phys. Rev. Lett. 120, 046801 (2018).
Wu, B.-Y., Shi, Z.-X., Wu, F., Wang, M.-J. & Wu, X.-H. Strong chirality in twisted bilayer α-MoO3. Chin. Phys. B 31, 044101 (2022).
Lin, X. et al. Chiral plasmons with twisted atomic bilayers. Phys. Rev. Lett. 125, 077401 (2020).
Wang, J., Bo, W., Ding, Y., Wang, X. & Mu, X. Optical, optoelectronic, and photoelectric properties in moiré superlattices of twist bilayer graphene. Mater. Today Phys. 14, 100238 (2020).
Mao, X.-R., Shao, Z.-K., Luan, H.-Y., Wang, S.-L. & Ma, R.-M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).
Wang, H., Ma, S., Zhang, S. & Lei, D. Intrinsic superflat bands in general twisted bilayer systems. Light Sci. Appl. 11, 159 (2022).
Garcia-Vidal, F. J. et al. Spoof surface plasmon photonics. Rev. Mod. Phys. 94, 025004 (2022).
Gao, Z. et al. Valley surface-wave photonic crystal and its bulk/edge transport. Phys. Rev. B 96, 201402 (2017).
Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).
Huang, L., Zhang, W. & Zhang, X. Moiré quasibound states in the continuum. Phys. Rev. Lett. 128, 253901 (2022).
Lou, B., Wang, B., Rodríguez, J. A., Cappelli, M. & Fan, S. Tunable guided resonance in twisted bilayer photonic crystal. Sci. Adv. 8, eadd4339 (2022).
Lou, B. & Fan, S. Tunable frequency filter based on twisted bilayer photonic crystal slabs. ACS Photon. 9, 800–805 (2022).
Yi, C.-H., Park, H. C. & Park, M. J. Strong interlayer coupling and stable topological flat bands in twisted bilayer photonic Moiré superlattices. Light Sci. Appl. 11, 289 (2022).
Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).
Mahmood, R., Ramirez, A. V. & Hillier, A. C. Creating two-dimensional quasicrystal, supercell, and Moiré lattices with laser interference lithography: implications for photonic bandgap materials. ACS Appl. Nano Mater. 4, 8851–8862 (2021).
Lubin, S. M., Hryn, A. J., Huntington, M. D., Engel, C. J. & Odom, T. W. Quasiperiodic moiré plasmonic crystals. ACS Nano 7, 11035–11042 (2013).
Zhang, Y. et al. Unfolded band structures of photonic quasicrystals and moiré superlattices. Phys. Rev. B 105, 165304 (2022).
Guan, J. et al. Far-field coupling between moiré photonic lattices. Nat. Nanotechnol. 18, 514–520 (2023).
Wang, W. et al. Moiré fringe induced gauge field in photonics. Phys. Rev. Lett. 125, 203901 (2020).
Hong, P. et al. Flatband mode in photonic moiré superlattice for boosting second-harmonic generation with monolayer van der Waals crystals. Opt. Lett. 47, 2326–2329 (2022).
Nguyen, H. S. et al. Symmetry breaking in photonic crystals: on-demand dispersion from flatband to Dirac cones. Phys. Rev. Lett. 120, 066102 (2018).
Nguyen, D. X. et al. Magic configurations in moiré superlattice of bilayer photonic crystals: almost-perfect flatbands and unconventional localization. Phys. Rev. Res. 4, L032031 (2022).
Talukdar, T. H., Hardison, A. L. & Ryckman, J. D. Moiré effects in silicon photonic nanowires. ACS Photon. 9, 1286–1294 (2022).
Dorrell, W., Pirie, H., Gardezi, S. M., Drucker, N. C. & Hoffman, J. E. van der Waals metamaterials. Phys. Rev. B 101, 121103 (2020).
Lu, J. et al. Valley topological phases in bilayer sonic crystals. Phys. Rev. Lett. 120, 116802 (2018).
Wu, S.-Q. et al. Higher-order topological states in acoustic twisted moiré superlattices. Phys. Rev. Appl. 17, 034061 (2022).
López, M. R., Zhang, Z., Torrent, D. & Christensen, J. Theory of holey twistsonic media. Commun. Mater. 3, 99 (2022).
Martí-Sabaté, M. & Torrent, D. Dipolar localization of waves in twisted phononic crystal plates. Phys. Rev. Appl. 15, L011001 (2021).
Oudich, M., Deng, Y. & Jing, Y. Twisted pillared phononic crystal plates. Appl. Phys. Lett. 120, 232202 (2022).
Yves, S. et al. Moiré-driven topological transitions and extreme anisotropy in elastic metasurfaces. Adv. Sci. 9, 2200181 (2022).
Jin, Y., Wang, W., Wen, Z., Torrent, D. & Djafari-Rouhani, B. Topological states in twisted pillared phononic plates. Extreme Mech. Lett. 39, 100777 (2020).
Tang, L. et al. Photonic flat-band lattices and unconventional light localization. Nanophotonics 9, 1161–1176 (2020).
Wang, H. et al. Exceptional concentric rings in a non-Hermitian bilayer photonic system. Phys. Rev. B 100, 165134 (2019).
Zhang, D. et al. PT-symmetric non-Hermitian AB-stacked bilayer honeycomb photonic lattice. J. Opt. Soc. Am. B 37, 3407–3413 (2020).
Wang, D. et al. Realization of a \(\mathbb{Z}\)-classified chiral-symmetric higher-order topological insulator in a coupling-inverted acoustic crystal. Phys. Rev. Lett. 131, 157201 (2023).
Wang, H.-F. et al. Bound states in the continuum in a bilayer photonic crystal with TE–TM cross coupling. Phys. Rev. B 98, 214101 (2018).
Liu, L., Li, T., Zhang, Q., Xiao, M. & Qiu, C. Universal mirror-stacking approach for constructing topological bound states in the continuum. Phys. Rev. Lett. 130, 106301 (2023).
Di Mauro Villari, L. & Principi, A. Optotwistronics of bilayer graphene. Phys. Rev. B 106, 035401 (2022).
Zhang, Y., Qin, Y., Zheng, H. & Ren, H. The evolution of the solitons in periodic photonic moiré lattices controlled by rotation angle with saturable self-focusing nonlinearity media. Laser Phys. 32, 045401 (2022).
Fang, X., Wen, J., Bonello, B., Yin, J. & Yu, D. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat. Commun. 8, 1288 (2017).
Librandi, G., Tubaldi, E. & Bertoldi, K. Programming nonreciprocity and reversibility in multistable mechanical metamaterials. Nat. Commun. 12, 3454 (2021).
Guo, X., Gusev, V. E., Tournat, V., Deng, B. & Bertoldi, K. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface. Phys. Rev. E 99, 052209 (2019).
Deng, B., Raney, J. R., Tournat, V. & Bertoldi, K. Elastic vector solitons in soft architected materials. Phys. Rev. Lett. 118, 204102 (2017).
Deng, B., Wang, P., He, Q., Tournat, V. & Bertoldi, K. Metamaterials with amplitude gaps for elastic solitons. Nat. Commun. 9, 3410 (2018).
Wang, X. et al. A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems. Front. Optoelectron. 16, 38 (2023).
Motycka, J. A grazing-incidence moire interferometer for displacement and planeness measurement. Exp. Mech. 15, 279–281 (1975).
Khan, M. T. I., Kazuhiko, M., Teramoto, K. & Hasan, M. M. Precise measurement of moving object by moiré-based image processing technique. Open J. Fluid Dyn. 2, 202–207 (2012).
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
Ikeda, T. N. High-order nonlinear optical response of a twisted bilayer graphene. Phys. Rev. Res. 2, 032015 (2020).
Katz, O., Refael, G. & Lindner, N. H. Optically induced flat bands in twisted bilayer graphene. Phys. Rev. B 102, 155123 (2020).
Kort-Kamp, W. J. M., Culchac, F. J., Capaz, R. B. & Pinheiro, F. A. Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B 98, 195431 (2018).
Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).
Alborzi, M. S., Rajabpour, A. & Montazeri, A. Heat transport in 2D van der Waals heterostructures: an analytical modeling approach. Int. J. Therm. Sci. 150, 106237 (2020).
Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).
Crasto de Lima, F., Miwa, R. H. & Suárez Morell, E. Double flat bands in kagome twisted bilayers. Phys. Rev. B 100, 155421 (2019).
Sinha, M. et al. Twisting of 2D kagomé sheets in layered intermetallics. ACS Cent. Sci. 7, 1381–1390 (2021).
Can, O. et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat. Phys. 17, 519–524 (2021).
Alnasser, K., Kamau, S., Hurley, N., Cui, J. & Lin, Y. Photonic band gaps and resonance modes in 2D twisted moiré photonic crystal. Photonics 8, 408 (2021).
Zheng, S. et al. Topological network and valley beam splitter in acoustic biaxially strained moiré superlattices. Phys. Rev. B 105, 184104 (2022).
Tang, H., Ni, X., Du, F., Srikrishna, V. & Mazur, E. On-chip light trapping in bilayer moiré photonic crystal slabs. Appl. Phys. Lett. 121, 231702 (2022).
Raun, A., Tang, H., Ni, X., Mazur, E. & Hu, E. L. GaN magic angle laser in a merged moiré photonic crystal. ACS Photon. 10, 3001–3007 (2023).
Acknowledgements
Y.J. acknowledges the support of the US National Science Foundation (CMMI 2039463). C.Q. acknowledges financial support from the National Research Foundation (grant no. NRF-CRP26-2021-0004) and IRG from A*STAR (grant no. M22K2c0088 with WBS A-8001322-00-00).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oudich, M., Kong, X., Zhang, T. et al. Engineered moiré photonic and phononic superlattices. Nat. Mater. 23, 1169–1178 (2024). https://doi.org/10.1038/s41563-024-01950-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-024-01950-9