Abstract
Metal–organic frameworks (MOFs) have captivated researchers for over 25 years, yet few have successfully transitioned to commercial markets. This Perspective elucidates the progress, challenges and opportunities in moving MOFs to market, focusing on applied research. The five applied research steps that enable technology development and demonstration are reviewed: synthesis, forming, processing (washing and activation), prototyping and compliance. Furthermore, the importance of a comprehensive techno-economic analysis incorporating a complete picture of costs and revenues is discussed. Readers can use the understanding of applied research presented herein to tackle their MOF commercialization challenges.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
Kaskel, S., D’Alessandro, D., Bennett, T. D. & Moon, H. R. Metal–organic frameworks: special collection 2020. Chemistry 28, e202200607 (2022).
Gropp, C. et al. Standard practices of reticular chemistry. ACS Cent. Sci. 6, 1255–1273 (2020).
Ongari, D., Talirz, L. & Smit, B. Too many materials and too many applications: an experimental problem waiting for a computational solution. ACS Cent. Sci. 6, 1890–1900 (2020).
Wang, J., Imaz, I. & Maspoch, D. Metal–organic frameworks: why make them small? Small Struct. 3, 2100126 (2022).
Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970–1000 (2012).
Viciano-Chumillas, M. et al. Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces. Acc. Chem. Res. 53, 520–531 (2020).
Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).
Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).
Ding, M., Cai, X. & Jiang, H.-L. Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019).
Zhou, C. et al. Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018).
Yang, W., Li, X., Li, Y., Zhu, R. & Pang, H. Applications of metal–organic-framework-derived carbon materials. Adv. Mater. 31, 1804740 (2019).
Freund, R. et al. The current status of MOF and COF applications. Angew. Chem. Int. Ed. 60, 23975–24001 (2021).
Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019).
Farrusseng, D., Aguado, S. & Pinel, C. Metal–organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48, 7502–7513 (2009).
Tibbetts, I. & Kostakis, G. E. Recent bio-advances in metal–organic frameworks. Molecules 25, 1291 (2020).
Zhao, R., Liang, Z., Zou, R. & Xu, Q. Metal–organic frameworks for batteries. Joule 2, 2235–2259 (2018).
Yang, F. et al. Applications of metal–organic frameworks in water treatment: a review. Small 18, 2105715 (2022).
Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).
Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal–organic frameworks. Adv. Mater. 30, 1704501 (2018).
Frameworks for commercial success. Nat. Chem. 8, 987 (2016).
Maine, E. & Seegopaul, P. Accelerating advanced-materials commercialization. Nat. Mater. 15, 487–491 (2016).
Reiss, T., Hjelt, K. & Ferrari, A. C. Graphene is on track to deliver on its promises. Nat. Nanotechnol. 14, 907–910 (2019).
Mankins, J. C. Technology readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).
Murphy, L. M. & Edwards, P. L. Bridging the Valley of Death: Transitioning from Public to Private Sector Financing (National Renewable Energy Laboratory, 2013); http://www.globalwateradvisors.com/wp-content/uploads/NREL-Bridging_the_Valley_of_Death1.pdf
Severino, M. I., Gkaniatsou, E., Nouar, F., Pinto, M. L. & Serre, C. MOFs industrialization: a complete assessment of production costs. Faraday Discuss. 231, 326–341 (2021).
Czaja, A. U., Trukhan, N. & Müller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).
Mueller, U. et al. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).
Ryu, U. et al. Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coord. Chem. Rev. 426, 213544 (2021).
Chen, Z. et al. The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discuss. 225, 9–69 (2021).
Stock, N. High-throughput investigations employing solvothermal syntheses. Micropor. Mesopor. Mater. 129, 287–295 (2010).
Luo, Y. et al. MOF synthesis prediction enabled by automatic data mining and machine learning. Angew. Chem. Int. Ed. 61, e202200242 (2022).
Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).
Zheng, Z. et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136–156 (2023).
Wei, X.-F., Miao, J. & Shi, L.-L. Synthesis, crystal structure, and luminescent property of one 3D porous metal–organic framework with dmc topology. Syn. React. Inorg. Met. 46, 365–369 (2015).
Lin, J.-B. et al. A scalable metal–organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021).
Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).
Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Müller, U. The progression of Al-based metal–organic frameworks—from academic research to industrial production and applications. Micropor. Mesopor. Mater. 157, 131–136 (2012).
Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017).
Kumar, S. et al. Green synthesis of metal–organic frameworks: a state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 420, 213407 (2020).
Crawford, D. et al. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 6, 1645–1649 (2015).
Klimakow, M., Klobes, P., Thünemann, A. F., Rademann, K. & Emmerling, F. Mechanochemical synthesis of metal–organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 22, 5216–5221 (2010).
Rubio-Martinez, M. et al. Versatile, high quality and scalable continuous flow production of metal–organic frameworks. Sci. Rep. 4, 5443 (2014).
Taddei, M., Steitz, D. A., van Bokhoven, J. A. & Ranocchiari, M. Continuous-flow microwave synthesis of metal–organic frameworks: a highly efficient method for large-scale production. Chemistry 22, 3245–3249 (2016).
Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M. & Maspoch, D. A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013).
Garcia Marquez, A. et al. Green scalable aerosol synthesis of porous metal–organic frameworks. Chem. Commun. 49, 3848–3850 (2013).
Seo, Y.-K. et al. Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Micropor. Mesopor. Mater. 119, 331–337 (2009).
Faustini, M. et al. Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 135, 14619–14626 (2013).
Perini, G., Salvatori, F., Ochsenbein, D. R., Mazzotti, M. & Vetter, T. Filterability prediction of needle-like crystals based on particle size and shape distribution data. Sep. Purif. Technol. 211, 768–781 (2019).
Wee, L. H., Lohe, M. R., Janssens, N., Kaskel, S. & Martens, J. A. Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22, 13742–13746 (2012).
Casaban, J. et al. Towards MOFs’ mass market adoption: MOF technologies’ efficient and versatile one-step extrusion of shaped MOFs directly from raw materials. Faraday Discuss. 231, 312–325 (2021).
Lee, U.-H., Valekar, A. H., Hwang, Y. K. & Chang, J.-S. in The Chemistry of Metal–Organic Frameworks (ed. Kaskel, S.) 551–572 (Wiley, 2016).
Yang, S. et al. Preparation of highly porous metal–organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 142, 13415–13425 (2020).
Purewal, J. J. et al. Increased volumetric hydrogen uptake of MOF-5 by powder densification. Int. J. Hydrog. Energy 37, 2723–2727 (2012).
Wang, T. C. et al. Surviving under pressure: the role of solvent, crystal size, and morphology during pelletization of metal–organic frameworks. ACS Appl. Mater. Interf. 13, 52106–52112 (2021).
Bétard, A. & Fischer, R. A. Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).
Shi, X., Shan, Y., Du, M. & Pang, H. Synthesis and application of metal–organic framework films. Coord. Chem. Rev. 444, 214060 (2021).
Tian, T. et al. A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018).
Suresh, K. et al. Optimizing hydrogen storage in mofs through engineering of crystal morphology and control of crystal size. J. Am. Chem. Soc. 143, 10727–10734 (2021).
Liu, M., Cai, N., Chan, V. & Yu, F. Development and applications of MOFs derivative one-dimensional nanofibers via electrospinning: a mini-review. Nanomaterials 9, 1306 (2019).
Kearns, E. R., Gillespie, R. & D’Alessandro, D. M. 3D printing of metal–organic framework composite materials for clean energy and environmental applications. J. Mater. Chem. A 9, 27252–27270 (2021).
Quan, W. et al. Scalable formation of diamine-appended metal–organic framework hollow fiber sorbents for postcombustion CO2 capture. JACS Au 2, 1350–1358 (2022).
Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).
Mondloch, J. E., Karagiaridi, O., Farha, O. K. & Hupp, J. T. Activation of metal–organic framework materials. CrystEngComm 15, 9258–9264 (2013).
Deacon, A. et al. Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Commun. Chem. 5, 18 (2022).
DeSantis, D. et al. Techno-economic analysis of metal–organic frameworks for hydrogen and natural gas storage. Energy Fuels 31, 2024–2032 (2017).
Ma, J., Kalenak, A. P., Wong-Foy, A. G. & Matzger, A. J. Rapid guest exchange and ultra-low surface tension solvents optimize metal–organic framework activation. Angew. Chem. Int. Ed. 56, 14618–14621 (2017).
Lipsky, M. S. & Sharp, L. K. From idea to market: the drug approval process. J. Am. Board Fam. Pract. 14, 362–367 (2001).
Liu, Z., Deng, Z., Davis, S. J., Giron, C. & Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 3, 217–219 (2022).
Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).
Camiré, A., Lacroix, M.-A., Brouillette, M. & Vézina, G. Assessment of a direct air capture process scale-up. In Proc. 16th Greenhouse Gas Control Technologies Conference https://doi.org/10.2139/ssrn.4286353 (Elsevier, 2022).
Hovington, P. et al. Rapid cycle temperature swing adsorption process using solid structured sorbent for CO2 capture from cement flue gas. In Proc. 16th Greenhouse Gas Control Technologies Conference https://doi.org/10.2139/ssrn.4286353 (Elsevier, 2021).
Cui, S. et al. Metal–organic frameworks as advanced moisture sorbents for energy-efficient high temperature cooling. Sci. Rep. 8, 15284 (2018).
Gökpinar, S. et al. Air-con metal–organic frameworks in binder composites for water adsorption heat transformation systems. Ind. Eng. Chem. Res. 58, 21493–21503 (2019).
Martins, V. F. D. et al. C2/C3 hydrocarbon separation by pressure swing adsorption on MIL-100(Fe). Ind. Eng. Chem. Res. 59, 10568–10582 (2020).
Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).
Worstell, J. in Scaling Chemical Processes (ed. Worstell, J.) 1–15 (Butterworth-Heinemann, 2016).
McConville, F. X. The Pilot Plant Real Book: A Unique Handbook For The Chemical Process Industry 2nd edn (Fxm Engineering & Design, 2006).
Commission Regulation (EU) 2021/2030 of 19 November 2021 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards N,N-dimethylformamide (European Commission, 2021); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R2030
Karthi, S., Devadasan, S. R., Murugesh, R., Sreenivasa, C. G. & Sivaram, N. M. Global views on integrating Six Sigma and ISO 9001 certification. Total Qual. Manage. Bus. Excell. 23, 237–262 (2012).
Wenger, S. R., Kearns, E. R., Miller, K. L. & D’Alessandro, D. M. Green, one-step mechanochemical synthesis and techno-economic analysis of UiO-66-NH2. ACS Appl. Energy Mater. https://doi.org/10.1021/acsaem.2c02460 (2022).
Luo, H., Cheng, F., Huelsenbeck, L. & Smith, N. Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage. J. Environ. Chem. Eng. 9, 105159 (2021).
Service, R. F. Crystalline nets harvest water from desert air, turn carbon dioxide into liquid fuel. Science https://doi.org/10.1126/science.aaz3733 (2019).
Nakhla, J. & Caskey, S. Metal organic frameworks (MOFs). Sigma-Aldrich https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/materials-science-and-engineering/photovoltaics-and-solar-cells/metal-organic-frameworks (2024).
Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).
Bettenhausen, C. The life-or-death race to improve carbon capture. Chemical & Engineering News https://cen.acs.org/environment/greenhouse-gases/capture-flue-gas-co2-emissions/99/i26 (2021).
Acknowledgements
We thank J. Siegfried, P. Fuller, P. Siu, J. Jeanneret, A. Peters, J. Falkowski, S. Weston, T. Skoulidas and A. Ivashko for helpful discussions. A. Peters generated Fig. 3e.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Each author is directly involved in the commercialization of MOFs, with O.K.F., W.M. and A.M.W. holding options to purchase equity in Numat Technologies. Inc., a company working on MOF commercialization.
Peer review
Peer review information
Nature Materials thanks Phillip Llewellyn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wright, A.M., Kapelewski, M.T., Marx, S. et al. Transitioning metal–organic frameworks from the laboratory to market through applied research. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01947-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41563-024-01947-4