Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Transitioning metal–organic frameworks from the laboratory to market through applied research

Abstract

Metal–organic frameworks (MOFs) have captivated researchers for over 25 years, yet few have successfully transitioned to commercial markets. This Perspective elucidates the progress, challenges and opportunities in moving MOFs to market, focusing on applied research. The five applied research steps that enable technology development and demonstration are reviewed: synthesis, forming, processing (washing and activation), prototyping and compliance. Furthermore, the importance of a comprehensive techno-economic analysis incorporating a complete picture of costs and revenues is discussed. Readers can use the understanding of applied research presented herein to tackle their MOF commercialization challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MOF diversity and commercialization considerations.
Fig. 2: Optimized synthesis of four MOFs and a summary of alternative HKUST-1 synthesis conditions.
Fig. 3: Microcrystalline MOF powders and MOFs processed by different techniques.
Fig. 4: Prototyping conditions and examples.

Similar content being viewed by others

References

  1. Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  2. Kaskel, S., D’Alessandro, D., Bennett, T. D. & Moon, H. R. Metal–organic frameworks: special collection 2020. Chemistry 28, e202200607 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Gropp, C. et al. Standard practices of reticular chemistry. ACS Cent. Sci. 6, 1255–1273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ongari, D., Talirz, L. & Smit, B. Too many materials and too many applications: an experimental problem waiting for a computational solution. ACS Cent. Sci. 6, 1890–1900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, J., Imaz, I. & Maspoch, D. Metal–organic frameworks: why make them small? Small Struct. 3, 2100126 (2022).

    Article  CAS  Google Scholar 

  6. Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970–1000 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Viciano-Chumillas, M. et al. Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces. Acc. Chem. Res. 53, 520–531 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  9. Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    Article  CAS  Google Scholar 

  10. Ding, M., Cai, X. & Jiang, H.-L. Improving MOF stability: approaches and applications. Chem. Sci. 10, 10209–10230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, C. et al. Metal–organic framework glasses with permanent accessible porosity. Nat. Commun. 9, 5042 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang, W., Li, X., Li, Y., Zhu, R. & Pang, H. Applications of metal–organic-framework-derived carbon materials. Adv. Mater. 31, 1804740 (2019).

    Article  Google Scholar 

  13. Freund, R. et al. The current status of MOF and COF applications. Angew. Chem. Int. Ed. 60, 23975–24001 (2021).

    Article  CAS  Google Scholar 

  14. Lin, R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019).

    Article  CAS  Google Scholar 

  15. Farrusseng, D., Aguado, S. & Pinel, C. Metal–organic frameworks: opportunities for catalysis. Angew. Chem. Int. Ed. 48, 7502–7513 (2009).

    Article  CAS  Google Scholar 

  16. Tibbetts, I. & Kostakis, G. E. Recent bio-advances in metal–organic frameworks. Molecules 25, 1291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, R., Liang, Z., Zou, R. & Xu, Q. Metal–organic frameworks for batteries. Joule 2, 2235–2259 (2018).

    Article  CAS  Google Scholar 

  18. Yang, F. et al. Applications of metal–organic frameworks in water treatment: a review. Small 18, 2105715 (2022).

    Article  CAS  Google Scholar 

  19. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal–organic frameworks. Adv. Mater. 30, 1704501 (2018).

    Article  Google Scholar 

  21. Frameworks for commercial success. Nat. Chem. 8, 987 (2016).

  22. Maine, E. & Seegopaul, P. Accelerating advanced-materials commercialization. Nat. Mater. 15, 487–491 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Reiss, T., Hjelt, K. & Ferrari, A. C. Graphene is on track to deliver on its promises. Nat. Nanotechnol. 14, 907–910 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Mankins, J. C. Technology readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).

    Article  Google Scholar 

  25. Murphy, L. M. & Edwards, P. L. Bridging the Valley of Death: Transitioning from Public to Private Sector Financing (National Renewable Energy Laboratory, 2013); http://www.globalwateradvisors.com/wp-content/uploads/NREL-Bridging_the_Valley_of_Death1.pdf

  26. Severino, M. I., Gkaniatsou, E., Nouar, F., Pinto, M. L. & Serre, C. MOFs industrialization: a complete assessment of production costs. Faraday Discuss. 231, 326–341 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Czaja, A. U., Trukhan, N. & Müller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Mueller, U. et al. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    Article  CAS  Google Scholar 

  29. Ryu, U. et al. Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coord. Chem. Rev. 426, 213544 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Z. et al. The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discuss. 225, 9–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Stock, N. High-throughput investigations employing solvothermal syntheses. Micropor. Mesopor. Mater. 129, 287–295 (2010).

    Article  CAS  Google Scholar 

  32. Luo, Y. et al. MOF synthesis prediction enabled by automatic data mining and machine learning. Angew. Chem. Int. Ed. 61, e202200242 (2022).

    Article  CAS  Google Scholar 

  33. Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng, Z. et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136–156 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Wei, X.-F., Miao, J. & Shi, L.-L. Synthesis, crystal structure, and luminescent property of one 3D porous metal–organic framework with dmc topology. Syn. React. Inorg. Met. 46, 365–369 (2015).

    Article  Google Scholar 

  36. Lin, J.-B. et al. A scalable metal–organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Cadiau, A. et al. Design of hydrophilic metal organic framework water adsorbents for heat reallocation. Adv. Mater. 27, 4775–4780 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Müller, U. The progression of Al-based metal–organic frameworks—from academic research to industrial production and applications. Micropor. Mesopor. Mater. 157, 131–136 (2012).

    Article  CAS  Google Scholar 

  39. Rubio-Martinez, M. et al. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Kumar, S. et al. Green synthesis of metal–organic frameworks: a state-of-the-art review of potential environmental and medical applications. Coord. Chem. Rev. 420, 213407 (2020).

    Article  CAS  Google Scholar 

  41. Crawford, D. et al. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 6, 1645–1649 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klimakow, M., Klobes, P., Thünemann, A. F., Rademann, K. & Emmerling, F. Mechanochemical synthesis of metal–organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 22, 5216–5221 (2010).

    Article  CAS  Google Scholar 

  43. Rubio-Martinez, M. et al. Versatile, high quality and scalable continuous flow production of metal–organic frameworks. Sci. Rep. 4, 5443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taddei, M., Steitz, D. A., van Bokhoven, J. A. & Ranocchiari, M. Continuous-flow microwave synthesis of metal–organic frameworks: a highly efficient method for large-scale production. Chemistry 22, 3245–3249 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M. & Maspoch, D. A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 5, 203–211 (2013).

    Article  PubMed  Google Scholar 

  46. Garcia Marquez, A. et al. Green scalable aerosol synthesis of porous metal–organic frameworks. Chem. Commun. 49, 3848–3850 (2013).

    Article  CAS  Google Scholar 

  47. Seo, Y.-K. et al. Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Micropor. Mesopor. Mater. 119, 331–337 (2009).

    Article  CAS  Google Scholar 

  48. Faustini, M. et al. Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 135, 14619–14626 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Perini, G., Salvatori, F., Ochsenbein, D. R., Mazzotti, M. & Vetter, T. Filterability prediction of needle-like crystals based on particle size and shape distribution data. Sep. Purif. Technol. 211, 768–781 (2019).

    Article  CAS  Google Scholar 

  50. Wee, L. H., Lohe, M. R., Janssens, N., Kaskel, S. & Martens, J. A. Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22, 13742–13746 (2012).

    Article  CAS  Google Scholar 

  51. Casaban, J. et al. Towards MOFs’ mass market adoption: MOF technologies’ efficient and versatile one-step extrusion of shaped MOFs directly from raw materials. Faraday Discuss. 231, 312–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, U.-H., Valekar, A. H., Hwang, Y. K. & Chang, J.-S. in The Chemistry of Metal–Organic Frameworks (ed. Kaskel, S.) 551–572 (Wiley, 2016).

  53. Yang, S. et al. Preparation of highly porous metal–organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 142, 13415–13425 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Purewal, J. J. et al. Increased volumetric hydrogen uptake of MOF-5 by powder densification. Int. J. Hydrog. Energy 37, 2723–2727 (2012).

    Article  CAS  Google Scholar 

  55. Wang, T. C. et al. Surviving under pressure: the role of solvent, crystal size, and morphology during pelletization of metal–organic frameworks. ACS Appl. Mater. Interf. 13, 52106–52112 (2021).

    Article  CAS  Google Scholar 

  56. Bétard, A. & Fischer, R. A. Metal–organic framework thin films: from fundamentals to applications. Chem. Rev. 112, 1055–1083 (2012).

    Article  PubMed  Google Scholar 

  57. Shi, X., Shan, Y., Du, M. & Pang, H. Synthesis and application of metal–organic framework films. Coord. Chem. Rev. 444, 214060 (2021).

    Article  CAS  Google Scholar 

  58. Tian, T. et al. A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Suresh, K. et al. Optimizing hydrogen storage in mofs through engineering of crystal morphology and control of crystal size. J. Am. Chem. Soc. 143, 10727–10734 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, M., Cai, N., Chan, V. & Yu, F. Development and applications of MOFs derivative one-dimensional nanofibers via electrospinning: a mini-review. Nanomaterials 9, 1306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kearns, E. R., Gillespie, R. & D’Alessandro, D. M. 3D printing of metal–organic framework composite materials for clean energy and environmental applications. J. Mater. Chem. A 9, 27252–27270 (2021).

    Article  CAS  Google Scholar 

  62. Quan, W. et al. Scalable formation of diamine-appended metal–organic framework hollow fiber sorbents for postcombustion CO2 capture. JACS Au 2, 1350–1358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Mondloch, J. E., Karagiaridi, O., Farha, O. K. & Hupp, J. T. Activation of metal–organic framework materials. CrystEngComm 15, 9258–9264 (2013).

    Article  CAS  Google Scholar 

  65. Deacon, A. et al. Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production. Commun. Chem. 5, 18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. DeSantis, D. et al. Techno-economic analysis of metal–organic frameworks for hydrogen and natural gas storage. Energy Fuels 31, 2024–2032 (2017).

    Article  CAS  Google Scholar 

  67. Ma, J., Kalenak, A. P., Wong-Foy, A. G. & Matzger, A. J. Rapid guest exchange and ultra-low surface tension solvents optimize metal–organic framework activation. Angew. Chem. Int. Ed. 56, 14618–14621 (2017).

    Article  CAS  Google Scholar 

  68. Lipsky, M. S. & Sharp, L. K. From idea to market: the drug approval process. J. Am. Board Fam. Pract. 14, 362–367 (2001).

    CAS  PubMed  Google Scholar 

  69. Liu, Z., Deng, Z., Davis, S. J., Giron, C. & Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 3, 217–219 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Camiré, A., Lacroix, M.-A., Brouillette, M. & Vézina, G. Assessment of a direct air capture process scale-up. In Proc. 16th Greenhouse Gas Control Technologies Conference https://doi.org/10.2139/ssrn.4286353 (Elsevier, 2022).

  72. Hovington, P. et al. Rapid cycle temperature swing adsorption process using solid structured sorbent for CO2 capture from cement flue gas. In Proc. 16th Greenhouse Gas Control Technologies Conference https://doi.org/10.2139/ssrn.4286353 (Elsevier, 2021).

  73. Cui, S. et al. Metal–organic frameworks as advanced moisture sorbents for energy-efficient high temperature cooling. Sci. Rep. 8, 15284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gökpinar, S. et al. Air-con metal–organic frameworks in binder composites for water adsorption heat transformation systems. Ind. Eng. Chem. Res. 58, 21493–21503 (2019).

    Article  Google Scholar 

  75. Martins, V. F. D. et al. C2/C3 hydrocarbon separation by pressure swing adsorption on MIL-100(Fe). Ind. Eng. Chem. Res. 59, 10568–10582 (2020).

    Article  CAS  Google Scholar 

  76. Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Worstell, J. in Scaling Chemical Processes (ed. Worstell, J.) 1–15 (Butterworth-Heinemann, 2016).

  78. McConville, F. X. The Pilot Plant Real Book: A Unique Handbook For The Chemical Process Industry 2nd edn (Fxm Engineering & Design, 2006).

  79. Commission Regulation (EU) 2021/2030 of 19 November 2021 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards N,N-dimethylformamide (European Commission, 2021); https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R2030

  80. Karthi, S., Devadasan, S. R., Murugesh, R., Sreenivasa, C. G. & Sivaram, N. M. Global views on integrating Six Sigma and ISO 9001 certification. Total Qual. Manage. Bus. Excell. 23, 237–262 (2012).

    Article  Google Scholar 

  81. Wenger, S. R., Kearns, E. R., Miller, K. L. & D’Alessandro, D. M. Green, one-step mechanochemical synthesis and techno-economic analysis of UiO-66-NH2. ACS Appl. Energy Mater. https://doi.org/10.1021/acsaem.2c02460 (2022).

    Article  Google Scholar 

  82. Luo, H., Cheng, F., Huelsenbeck, L. & Smith, N. Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage. J. Environ. Chem. Eng. 9, 105159 (2021).

    Article  CAS  Google Scholar 

  83. Service, R. F. Crystalline nets harvest water from desert air, turn carbon dioxide into liquid fuel. Science https://doi.org/10.1126/science.aaz3733 (2019).

    Article  PubMed  Google Scholar 

  84. Nakhla, J. & Caskey, S. Metal organic frameworks (MOFs). Sigma-Aldrich https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/materials-science-and-engineering/photovoltaics-and-solar-cells/metal-organic-frameworks (2024).

  85. Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bettenhausen, C. The life-or-death race to improve carbon capture. Chemical & Engineering News https://cen.acs.org/environment/greenhouse-gases/capture-flue-gas-co2-emissions/99/i26 (2021).

Download references

Acknowledgements

We thank J. Siegfried, P. Fuller, P. Siu, J. Jeanneret, A. Peters, J. Falkowski, S. Weston, T. Skoulidas and A. Ivashko for helpful discussions. A. Peters generated Fig. 3e.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Morris.

Ethics declarations

Competing interests

Each author is directly involved in the commercialization of MOFs, with O.K.F., W.M. and A.M.W. holding options to purchase equity in Numat Technologies. Inc., a company working on MOF commercialization.

Peer review

Peer review information

Nature Materials thanks Phillip Llewellyn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, A.M., Kapelewski, M.T., Marx, S. et al. Transitioning metal–organic frameworks from the laboratory to market through applied research. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01947-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing