Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Moiré superlattices in twisted two-dimensional halide perovskites

Abstract

Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conversion of RP-phase 2D perovskite into APbX3 phase via equilibrium solution method and characterizations.
Fig. 2: Square moiré patterns in TPLs.
Fig. 3: Twist-angle-dependent exciton transport and annihilation in MAPbI3 TPLs.
Fig. 4: Twist-angle-dependent PL emission in MAPbI3 TPLs.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Halbertal, D. et al. Multilayered atomic relaxation in van der Waals heterostructures. Phys. Rev. X 13, 011026 (2023).

    CAS  Google Scholar 

  4. Naik, M. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 609, 52–57 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Song, Z. et al. Deep quantum-dot arrays in moiré superlattices of non-van der Waals materials. J. Am. Chem. Soc. 144, 14657–14667 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  7. Zhang, L., Zhang, X. & Lu, G. Predictions of moiré excitons in twisted two-dimensional organic–inorganic halide perovskites. Chem. Sci. 12, 6073–6080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weeks, C. & Franz, M. Topological insulators on the Lieb and perovskite lattices. Phys. Rev. B 82, 085310 (2010).

    Article  Google Scholar 

  9. Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

  10. Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  CAS  Google Scholar 

  12. Blancon, J. C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y. et al. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 10, 1223–1233 (2017).

    Article  CAS  Google Scholar 

  14. Liu, Y., Yang, Z. & Liu, S. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Adv. Sci. 5, 1700471 (2018).

    Article  Google Scholar 

  15. Gao, Y. & Dou, L. Organic semiconductor-incorporated two-dimensional halide perovskites. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Akriti et al. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nat. Nanotechnol. 16, 584–591 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, A. et al. Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures. Nano Lett. 19, 4852–4860 (2019).

    Article  PubMed  Google Scholar 

  19. Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Pan, D. et al. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 16, 159–165 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Tabuchi, Y. et al. Preparation and characterization of natural lower dimensional layered perovskite-type compounds. J. Phys. Chem. Solids 61, 837–845 (2000).

    Article  CAS  Google Scholar 

  22. Niu, W., Eiden, A., Prakash, G. V. & Baumberg, J. J. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl. Phys. Lett. 104, 171111 (2014).

    Article  Google Scholar 

  23. Li, P. et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, J. et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z. et al. Degradation of two-dimensional CH3NH3PbI3 perovskite and CH3NH3PbI3/graphene heterostructure. ACS Appl. Mater. Interfaces 10, 24258–24265 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y. et al. Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15, 4741–4749 (2015).

    Article  CAS  Google Scholar 

  27. Sun, Y. et al. Engineering the phases and heterostructures of ultrathin hybrid perovskite nanosheets. Adv. Mater. 32, 2002392 (2020).

    Article  CAS  Google Scholar 

  28. Adjokatse, S. et al. Scalable fabrication of high-quality crystalline and stable FAPbI3 thin films by combining doctor-blade coating and the cation exchange reaction. Nanoscale 11, 5989–5997 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Reus, M. A. et al. Time-resolved orientation and phase analysis of lead halide perovskite film annealing probed by in situ GIWAXS. Adv. Opt. Mater. 10, 2102722 (2022).

  30. Blancon, J. C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang, Y. et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688–4692 (2015).

    Article  PubMed  Google Scholar 

  32. Dyksik, M. et al. Tuning the excitonic properties of the 2D (PEA)2(MA)n–1PbnI3n+1 perovskite family via quantum confinement. J. Phys. Chem. Lett. 12, 1638–1643 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Li, W. et al. Direct characterization of carrier diffusion in halide-perovskite thin films using transient photoluminescence imaging. ACS Photonics 6, 2375–2380 (2019).

    Article  CAS  Google Scholar 

  36. Saidaminov, M. I. et al. Multi-cation perovskites prevent carrier reflection from grain surfaces. Nat. Mater. 19, 412–418 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Deng, S. et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nat. Commun. 11, 664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brem, S. et al. Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale 12, 11088–11094 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Basov, D. N. et al. Polariton panorama. Nanophotonics 10, 549–577 (2021).

    Article  Google Scholar 

  42. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article  CAS  Google Scholar 

  43. Yu, Y. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 14, 267–273 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is primarily supported by the US Department of Energy, Office of Basic Energy Sciences, under award no. DE-SC0022082 (S.Z., L.J., L.D. and L.H.). The views expressed herein do not necessarily represent the views of the US Department of Energy or the United States government. L.D. acknowledges support from the National Science Foundation under award no. 2143568-DMR. The TEM work is supported by the Center for High-Resolution Electron Microscopy (CħEM) at ShanghaiTech University and the Shanghai Key Laboratory of High-Resolution Electron Microscopy (Y.L. and Y.Y.). E.M. acknowledges support from the German Research Foundation (DFG) via the CRC 1083 (project B9) as well as the regular project 504846924. G.L. acknowledges support from the US NSF PREM program (DMR-1828019) and the US Army Research Office (W911NF-23-10205). A.M.-K. acknowledges support from the School of Materials Engineering at Purdue University.

Author information

Authors and Affiliations

Authors

Contributions

L.D., L.H. and S.Z. designed the experiments. S.Z. synthesized and characterized all the 2D perovskite samples. L.J., D.B., S.K., Q.Z. and D.S. performed the optical properties characterizations and data analysis. Y.L., B.Y. and Y.Y. performed the TEM characterization and data analysis. J.Y.P. and S.Z. performed the confocal PL imaging on all the perovskite samples. L.Z., G.L., J.Y., J.J.P.T., E.M. and A.M.-K. performed the DFT and microscopic simulations as well as data analysis. Y.L. and S.Z. performed the device fabrication and characterization. B.P.F., A., Z.W., K.M. and H.P. participated in the materials characterization and data analysis. S.Z., L.D. and L.H. wrote the paper; all authors read and revised the paper.

Corresponding authors

Correspondence to Letian Dou or Libai Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Michael Saliba and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–65, Supplementary Tables 1–10 and References and Notes.

Source data

Source Data Fig. 1

PL source data, XRD signal data and AFM height profile.

Source Data Fig. 3

Time-resolved PL imaging of exciton diffusion data, exciton density distribution data, exciton diffusion coefficient data and TRPL decay data.

Source Data Fig. 4

Steady-state PL emission spectrum in twisted samples, summary of angle-dependent PL emission and temperature-dependent PL intensities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Jin, L., Lu, Y. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01921-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing