Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clamping enables enhanced electromechanical responses in antiferroelectric thin films

Abstract

Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electromechanical response of typical (relaxor) ferroelectric and antiferroelectric thin films.
Fig. 2: Enhanced electromechanical response in orientation-engineered PbZrO3 antiferroelectric thin films.
Fig. 3: Operando STEM studies of the phase transition and structural evolution in (004)O-oriented PbZrO3 thin films.
Fig. 4: Mechanism for the enhancement of electromechanical response and abnormal thickness scaling in antiferroelectric PbZrO3 thin films.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author upon request.

Code availability

Detailed information related to the codes of the DFT calculations used in this study is available from the corresponding author upon request.

References

  1. Cross, L. E. Ferroelectric materials for electromechanical transducer applications. Mater. Chem. Phys. 43, 108–115 (1996).

    Article  CAS  Google Scholar 

  2. Narayan, B. et al. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat. Mater. 17, 427–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Park, S. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  CAS  Google Scholar 

  4. Huangfu, G. et al. Giant electric field-induced strain in lead-free piezoceramics. Science 378, 1125–1130 (2022).

    Article  PubMed  Google Scholar 

  5. Kim, D. M. et al. Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates. Appl. Phys. Lett. 88, 142904 (2006).

    Article  Google Scholar 

  6. Xu, F. et al. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336–1348 (2001).

    Article  CAS  Google Scholar 

  7. Kim, J. et al. Coupled polarization and nanodomain evolution underpins large electromechanical responses in relaxors. Nat. Phys. 18, 1502–1509 (2022).

    Article  CAS  Google Scholar 

  8. Keech, R. et al. Lateral scaling of Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films for piezoelectric logic applications. J. Appl. Phys. 115, 234106 (2014).

    Article  Google Scholar 

  9. Liu, H. et al. Giant piezoelectricity in oxide thin films with nanopillar structure. Science 369, 292–297 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Park, D. S. et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 375, 653–657 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Eom, C. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012).

    Article  CAS  Google Scholar 

  12. Randall, C. A., Fan, Z., Reaney, I., Chen, L. Q. & Trolier-McKinstry, S. Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J. Am. Ceram. Soc. 104, 3775–3810 (2021).

    Article  CAS  Google Scholar 

  13. Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W. & Mathur, N. D. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Berlincourt, D. Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans. Sonics Ultrason. 13, 116–124 (1966).

    Article  CAS  Google Scholar 

  15. Zhuo, F. et al. Large field-induced strain, giant strain memory effect, and high thermal stability energy storage in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Acta Mater. 148, 28–37 (2018).

    Article  CAS  Google Scholar 

  16. Liu, H. et al. Electric-field-induced structure and domain texture evolution in PbZrO3-based antiferroelectric by in-situ high-energy synchrotron X-ray diffraction. Acta Mater. 184, 41–49 (2020).

    Article  CAS  Google Scholar 

  17. Lu, H. et al. Probing antiferroelectric-ferroelectric phase transitions in PbZrO3 capacitors by piezoresponse force microscopy. Adv. Funct. Mater. 30, 2003622 (2020).

    Article  CAS  Google Scholar 

  18. Xu, B., Ye, Y. & Cross, L. E. Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. J. Appl. Phys. 87, 2507–2515 (2000).

    Article  CAS  Google Scholar 

  19. Nadaud, K. et al. Dielectric, piezoelectric and electrostrictive properties of antiferroelectric lead-zirconate thin films. J. Alloy. Compd. 914, 165340 (2022).

    Article  CAS  Google Scholar 

  20. Yao, Y. et al. Ferrielectricity in the archetypal antiferroelectric, PbZrO3. Adv. Mater. 35, 2206541 (2023).

    Article  CAS  Google Scholar 

  21. Acharya, M. et al. Direct measurement of inverse piezoelectric effects in thin films using laser Doppler vibrometry. Phys. Rev. Appl. 20, 14017 (2023).

    Article  CAS  Google Scholar 

  22. Li, J. et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science 380, 87–93 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Boldyreva, K. et al. Microstructure and electrical properties of (120)O-oriented and of (001)O-oriented epitaxial antiferroelectric PbZrO3 thin films on (100) SrTiO3 substrates covered with different oxide bottom electrodes. J. Appl. Phys. 102, 44111 (2007).

    Article  Google Scholar 

  24. Pan, H. et al. Defect-induced, ferroelectric-like switching and adjustable dielectric tunability in antiferroelectrics. Adv. Mater. 35, 2300257 (2023).

    Article  CAS  Google Scholar 

  25. Ma, T. et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys. Rev. Lett. 123, 217602 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Lu, T. et al. Critical role of the coupling between the octahedral rotation and A-site ionic displacements in PbZrO3-based antiferroelectric materials investigated by in situ neutron diffraction. Phys. Rev. B 96, 214108 (2017).

    Article  Google Scholar 

  27. Tan, X., Ma, C., Frederick, J., Beckman, S. & Webber, K. G. The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 94, 4091–4107 (2011).

    Article  CAS  Google Scholar 

  28. Ricote, J. et al. A TEM and neutron diffraction study of the local structure in the rhombohedral phase of lead zirconate titanate. J. Phys. Condens. Matter 10, 1767–1786 (1998).

    Article  CAS  Google Scholar 

  29. Woodward, D. I., Knudsen, J. & Reaney, I. M. Review of crystal and domain structures in the PbZrxTi1–xO3 solid solution. Phys. Rev. B 72, 104110 (2005).

    Article  Google Scholar 

  30. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Cryst. B28, 3384–3392 (1972).

    Article  Google Scholar 

  31. Reyes-Lillo, S. E. & Rabe, K. M. Antiferroelectricity and ferroelectricity in epitaxially strained PbZrO3 from first principles. Phys. Rev. B 88, 180102 (2013).

    Article  Google Scholar 

  32. Lisenkov, S., Yao, Y., Bassiri-Gharb, N. & Ponomareva, I. Prediction of high-strain polar phases in antiferroelectric PbZrO3 from a multiscale approach. Phys. Rev. B 102, 104101 (2020).

    Article  CAS  Google Scholar 

  33. Park, S., Pan, M., Markowski, K., Yoshikawa, S. & Cross, L. E. Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics. J. Appl. Phys. 82, 1798–1803 (1997).

    Article  CAS  Google Scholar 

  34. Fu, H. X. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Noheda, B. et al. Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3. Phys. Rev. Lett. 86, 3891–3894 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Brewer, A. et al. Microscopic piezoelectric behavior of clamped and membrane (001) PMN-30PT thin films. Appl. Phys. Lett. 119, 202903 (2021).

    Article  CAS  Google Scholar 

  37. Tani, T., Li, J. F., Viehland, D. & Payne, D. A. Antiferroelectric-ferroelectric switching and induced strains for sol-gel derived lead zirconate thin layers. J. Appl. Phys. 75, 3017–3023 (1994).

    Article  CAS  Google Scholar 

  38. Maiwa, H. & Ichinose, N. Electrical and electromechanical properties of PbZrO3 thin films prepared by chemical solution deposition. Jpn. J. Appl. Phys. 40, 5507–5510 (2001).

    Article  CAS  Google Scholar 

  39. Sharifzadeh Mirshekarloo, M., Yao, K. & Sritharan, T. Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1–xySnxTiy)O3 antiferroelectric thin films. Appl. Phys. Lett. 97, 142902 (2010).

    Article  Google Scholar 

  40. Tagantsev, A. K. & Gerra, G. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100, 51607 (2006).

    Article  Google Scholar 

  41. Acharya, M. et al. Exploring the Pb1−xSrxHfO3 system and potential for high capacitive energy storage density and efficiency. Adv. Mater. 34, 2105967 (2022).

    Article  CAS  Google Scholar 

  42. Liu, C. et al. Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO3 thin films. Science 382, 1265–1269 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, J. X. et al. Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6, 98–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Padgett, E. et al. The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision. Ultramicroscopy 214, 112994 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Shao, Y. et al. Cepstral scanning transmission electron microscopy imaging of severe lattice distortions. Ultramicroscopy 231, 113252 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  53. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    Article  CAS  Google Scholar 

  54. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    Article  CAS  Google Scholar 

  55. Mathew, K. et al. Atomate: a high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T.J. Lee and O. Ashour for fruitful discussions. This work was funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (Materials Project programme KC23MP) for the development of functional materials. H.P., B.H., J.E.S., J.M.L. and L.W.M. acknowledge the support of the Army Research Laboratory under Cooperative Agreements W911NF-19-2-0119 and W911NF-24-2-0100. J.K. acknowledges the support of the US Army Research Office under grant W911NF-21-1-0118. Z.T. acknowledges the support of the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award no. DE-SC-0012375 for the development of complex oxide thin-film heterostructures. X.H. and I.H. acknowledge the support of the SRC-JUMP ASCENT centre. H.Z. acknowledges the support of the US Department of Defense, Air Force Office of Scientific Research under grant no. FA9550-18-1-0480. E.B. acknowledges support from the US National Science Foundation Graduate Research Fellowship under grant no. 1752814. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy, Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under contract no. DE-AC02-05CH11231. J.E.S. and L.W.M. acknowledge additional support from the Army Research Office under grant W911NF-21-1-0126.

Author information

Authors and Affiliations

Authors

Contributions

H.P. and L.W.M. conceived and designed this study. H.P., M.A., J.K. and I.H. deposited films. H.P., H.Z. and X.C. prepared the capacitor samples. H.P., X.H. and Z.T. performed the electrical and electromechanical measurements. M.Z., M.X. and J.M.L. conducted the STEM studies. E.B., L.A., F.R., G.H. and J.B.N. conducted the first-principles calculations. B.H. and J.E.S. provided feedback and insights on antiferroelectric materials and helped with analysis of the findings. The manuscript was written by H.P. and L.W.M., with contributions from all others. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Lane W. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ying-Hao Chu, Ming-Min Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–20, Tables 1 and 2 and references.

Supplementary Video 1

Operando STEM of the reversible field-induced antiferroelectric-to-ferroelectric transition.

Supplementary Data 1

Atomic coordinates of DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Zhu, M., Banyas, E. et al. Clamping enables enhanced electromechanical responses in antiferroelectric thin films. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01907-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing