Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated electron–nuclear dynamics of photoinduced water dissociation on rutile TiO2

Subjects

Abstract

Elucidating the mechanism of photoinduced water splitting on TiO2 is important for advancing the understanding of photocatalysis and the ability to control photocatalytic surface reactions. However, incomplete experimental information and complex coupled electron–nuclear motion make the microscopic understanding challenging. Here we analyse the atomic-scale pathways of photogenerated charge carrier transport and photoinduced water dissociation at the prototypical water–rutile TiO2(110) interface using first-principles dynamics simulations. Two distinct mechanisms are observed. Field-initiated electron migration leads to adsorbed water dissociation via proton transfer to a surface bridging oxygen. In the other pathway, adsorbed water dissociation occurs via proton donation to a second-layer water molecule coupled to photoexcited-hole transfer promoted by in-plane surface lattice distortions. Two stages of non-adiabatic in-plane lattice motion—expansion and recovery—are observed, which are closely associated with population changes in Ti3d orbitals. Controlling such highly correlated electron–nuclear dynamics may provide opportunities for boosting the performance of photocatalytic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic configuration and reaction mechanisms at the TiO2/water interface.
Fig. 2: Photoinduced water dissociation processes.
Fig. 3: Photoexcited-polaron-assisted dynamics.
Fig. 4: Photoinduced shift of the 3d electron energy level in the TiO2 surface polaron.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via GitLab at https://gitlab.com/tddft/water-on-rutile-tio2.

Code availability

The code that was used to simulate the findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Khan, S. U. M., Al-Shahry, M. & Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Hashimoto, K., Irie, H. & Fujishima, A. TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005).

    Article  CAS  Google Scholar 

  4. Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Guo Q., Zhou C., Ma Z. & Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 31, 1901997 (2019).

  6. Anpo, M. & Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505–516 (2003).

    Article  CAS  Google Scholar 

  7. Yin, W.-J., Wen, B., Zhou, C., Selloni, A. & Liu, L.-M. Excess electrons in reduced rutile and anatase TiO2. Surf. Sci. Rep. 73, 58–82 (2018).

    Article  CAS  Google Scholar 

  8. Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Bourikas, K., Kordulis, C. & Lycourghiotis, A. Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 114, 9754–9823 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kowalski, P. M., Camellone, M. F., Nair, N. N., Meyer, B. & Marx, D. Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys. Rev. Lett. 105, 146405 (2010).

    Article  PubMed  Google Scholar 

  11. Bikondoa, O. et al. Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189–192 (2006).

    Article  CAS  Google Scholar 

  12. Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Tan, S. et al. Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1 × 1 surface. J. Am. Chem. Soc. 134, 9978–9985 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, W. et al. Effect of the hydrogen bond in photoinduced water dissociation: a double-edged sword. J. Phys. Chem. Lett. 7, 603–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Tan, S. et al. Interfacial hydrogen-bonding dynamics in surface-facilitated dehydrogenation of water on TiO2(110). J. Am. Chem. Soc. 142, 826–834 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, D., Sheng, T., Chen, J., Wang, H.-F. & Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 1, 291–299 (2018).

    Article  CAS  Google Scholar 

  18. Migani, A. & Blancafort, L. What controls photocatalytic water oxidation on rutile TiO2(110) under ultra-high-vacuum conditions? J. Am. Chem. Soc. 139, 11845–11856 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article  CAS  Google Scholar 

  20. Rousseau, R., Glezakou, V.-A. & Selloni, A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 5, 460–475 (2020).

    Article  CAS  Google Scholar 

  21. Di Valentin, C. & Selloni, A. Bulk and surface polarons in photoexcited anatase TiO2. J. Phys. Chem. Lett. 2, 2223–2228 (2011).

    Article  Google Scholar 

  22. Cheng, J., VandeVondele, J. & Sprik, M. Identifying trapped electronic holes at the aqueous TiO2 interface. J. Phys. Chem. C 118, 5437–5444 (2014).

    Article  CAS  Google Scholar 

  23. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, J. & Sprik, M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J. Chem. Theory Comput. 6, 880–889 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, L.-M., Zhang, C., Thornton, G. & Michaelides, A. Structure and dynamics of liquid water on rutile TiO2(110). Phys. Rev. B 82, 161415 (2010).

    Article  Google Scholar 

  26. Long, R., Fang, W.-H. & Prezhdo, O. V. Strong interaction at the perovskite/TiO2 interface facilitates ultrafast photoinduced charge separation: a nonadiabatic molecular dynamics study. J. Phys. Chem. C 121, 3797–3806 (2017).

    Article  CAS  Google Scholar 

  27. Cheng, C., Fang, W. H., Long, R. & Prezhdo, O. V. Water splitting with a single-atom Cu/TiO2 photocatalyst: atomistic origin of high efficiency and proposed enhancement by spin selection. JACS Au 1, 550–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Che, L. et al. Breakdown of the Born-Oppenheimer approximation in the F + o-D2→DF + D reaction. Science 317, 1061–1064 (2007).

    Article  PubMed  Google Scholar 

  30. Lian, C., Guan, M., Hu, S., Zhang, J. & Meng, S. Photoexcitation in solids: first-principles quantum simulations by real-time TDDFT. Adv. Theory Simul. 1, 1800055 (2018).

    Article  Google Scholar 

  31. You P., Chen D., Lian C., Zhang C. & Meng S. First-principles dynamics of photoexcited molecules and materials towards a quantum description. WIREs Comput. Mol. Sci. 11, e1492 (2020).

  32. Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819–825 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Diebold, U. Perspective: a controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J. Chem. Phys. 147, 040901 (2017).

    Article  PubMed  Google Scholar 

  34. Wen, B., Calegari Andrade, M. F., Liu, L. M. & Selloni, A. Water dissociation at the water-rutile TiO2(110) interface from ab initio-based deep neural network simulations. Proc. Natl Acad. Sci. USA 120, e2212250120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Z. T. et al. Probing equilibrium of molecular and deprotonated water on TiO2(110). Proc. Natl Acad. Sci. USA 114, 1801–1805 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Y.-F. & Selloni, A. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 6, 4769–4774 (2016).

    Article  CAS  Google Scholar 

  37. Burns, P. C. & Hawthorne, F. C. Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. Can. Mineral. 34, 1089–1105 (1996).

    CAS  Google Scholar 

  38. Fu, K. M. et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009).

    Article  PubMed  Google Scholar 

  39. Di Valentin, C., Pacchioni, G. & Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett. 97, 166803 (2006).

    Article  PubMed  Google Scholar 

  40. Wang, Z. et al. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. J. Am. Chem. Soc. 137, 9146–9152 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Sidiropoulos, T. P. H. et al. Probing the energy conversion pathways between light, carriers, and lattice in real time with attosecond core-level spectroscopy. Phys. Rev. X 11, 041060 (2021).

    CAS  Google Scholar 

  42. Wagstaffe, M. et al. Photoinduced dynamics at the water/TiO2(101) interface. Phys. Rev. Lett. 130, 108001 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, X. et al. The formation time of Ti–O• and Ti–O•–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 1830–1841 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, H. Y. et al. Attosecond field emission. Nature 613, 662–666 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia, A. et al. SIESTA: recent developments and applications. J. Chem. Phys. 152, 204108 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  48. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    Article  PubMed  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from MOST (grant nos. 2021YFA1400201 and 2021YFA1400503), NSFC (grant nos. 11974400, 12025407, 11934003 and 92250303), CAS Project for Young Scientists in Basic Research YSBR-047 and ‘Strategic Priority Research Program B’ of the CAS (no. XDB330301). A.S. was supported by Department of Energy Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences Division, under award DE-SC0007347. P.Y. thanks Y. Wu for encouragement and discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.Y. and S.M. proposed the project. C.Z., A.S. and S.M. conceived and supervised this project. P.Y. carried out the simulations and performed the analysis. P.Y., X.L. and D.C. developed the methodologies and analysis codes. P.Y., C.Z., A.S. and S.M. interpreted the analysis and wrote the manuscript. All authors contributed to the discussions and revisions of the manuscript.

Corresponding authors

Correspondence to Cui Zhang, Annabella Selloni or Sheng Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Tanja Cuk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7 and Figs. 1–18.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, P., Chen, D., Liu, X. et al. Correlated electron–nuclear dynamics of photoinduced water dissociation on rutile TiO2. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01900-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing