Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heat-resistant super-dispersed oxide strengthened aluminium alloys

Abstract

Oxided-dispersion-strengthened (ODS) alloys are promising high-strength materials used in extreme environments such as high-temperature and radiation tolerance applications. Until now, ODS alloys have been developed for reducible metals by chemical processing methods, but there are no commercially available ODS alloys for unreducible metals, namely, Al, Mg, Ti, Zr and so on, owing to the challenge of uniformly dispersing oxide particles in these alloys by traditional techniques. Here we present a strategy to achieve ODS Al alloys containing highly dispersive 5 nm MgO nanoparticles by powder metallurgy, using nanoparticles that have in situ-grown graphene-like coatings and hence largely reduced surface energy. Notably, the densely dispersed MgO nanoparticles, which have a fully coherent relationship with an Al matrix, show effective suppression of interfacial vacancy diffusion, thus leading to unprecedented strength (~200 MPa) and creep resistance at temperatures as high as 500 °C. Our processing approach should enable the dispersion of ultrafine nanoparticles in a wide range of alloys for high-temperature-related applications.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Uniform dispersion of MgO NPs in an Al matrix.
Fig. 2: Mechanical properties of the as-extruded ODS alloys.
Fig. 3: Creep resistance of the as-extruded ODS alloys.
Fig. 4: MgO/Al interface with a cube-on-cube orientation relationship.
Fig. 5: GB stability and creep behaviours.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are available in this article or its Supplementary Information. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Hirata, A. et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nat. Mater. 10, 922–926 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Grimes, R. W. & Nuttall, W. J. Generating the option of a two-stage nuclear renaissance. Science 329, 799–803 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, T. M. et al. A 3D printable alloy designed for extreme environments. Nature 617, 513–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hayashi, T., Sarosi, P. M., Schneibel, J. H. & Mills, M. J. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater. 56, 1407–1416 (2008).

    Article  CAS  Google Scholar 

  5. Liu, G. et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Dong, Z., Ma, Z., Yu, L. & Liu, Y. Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor. Nat. Commun. 12, 5052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Viswanathan, V., Laha, T., Balani, K., Agarwal, A. & Seal, S. Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng. R 54, 121–285 (2006).

    Article  Google Scholar 

  8. Zhang, B. et al. Impact forces of water drops falling on superhydrophobic surfaces. Phys. Rev. Lett. 129, 104501 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Wierzba, A. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Exp. Fluids 12, 59–64 (1990).

    Article  Google Scholar 

  10. Gupta, R. K., Murty, B. S. & Birbilis, N. An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys (Springer, 2017).

  11. Kaufman, J. G. Fire Resistance of Aluminum and Aluminum Alloys (ASM International, 2016).

  12. Balbus, G. H. et al. Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy. Acta Mater. 215, 116973 (2021).

    Article  CAS  Google Scholar 

  13. Li, Q. et al. High temperature thermal and mechanical stability of high-strength nanotwinned Al alloys. Acta Mater. 165, 142–152 (2019).

    Article  CAS  Google Scholar 

  14. Lin, T. et al. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat. Commun. 10, 4124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prashanth, K. G. et al. Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Addit. Manuf. https://doi.org/10.1016/j.addma.2015.01.001 (2015).

  16. Cavaliere, P. & Squillace, A. High temperature deformation of friction stir processed 7075 aluminium alloy. Mater. Charact. 55, 136–142 (2005).

    Article  CAS  Google Scholar 

  17. Shaw, L. Compressive behavior of an extruded nanocrystalline Al–Fe–Cr–Ti alloy. Scr. Mater. 50, 921–925 (2004).

    Article  CAS  Google Scholar 

  18. Sasaki, H., Kobayashi, N., Kita, K., Nagahora, J. & Inoue, A. Nanocrystalline structure and mechanical properties of vapor quenched Al–Zr–Fe alloy sheets prepared by electron-beam deposition. Mater. Trans. 44, 1948–1954 (2003).

    Article  CAS  Google Scholar 

  19. Mohamed, F. A. & Langdon, T. G. Deformation mechanism maps based on grain size. Metall. Mater. Trans. B 5, 2339–2345 (1974).

    Article  CAS  Google Scholar 

  20. Xue, H. et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering. Nat. Mater. 22, 434–441 (2022).

    Article  PubMed  Google Scholar 

  21. De Luca, A., Seidman, D. N. & Dunand, D. C. Mn and Mo additions to a dilute Al–Zr–Sc–Er–Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening. Acta Mater. 194, 60–67 (2020).

    Article  CAS  Google Scholar 

  22. Knipling, K. & Dunand, D. C. Creep resistance of cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys at 300–400°C.Scr. Mater. 59, 387–390 (2008).

    Article  CAS  Google Scholar 

  23. Ng, D. S. & Dunand, D. C. Aging- and creep-resistance of a cast hypoeutectic Al–6.9Ce–9.3Mg (wt.%) alloy. Mater. Sci. Eng. A 786, 139398 (2020).

    Article  CAS  Google Scholar 

  24. Heugue, P., Larouche, D., Breton, F., Martinez, R. & Chen, X. G. Evaluation of the growth kinetics of θ′ and θ-Al2Cu precipitates in a binary Al-3.5 wt pct Cu alloy. Metall. Mater. Trans. A 50, 3048–3056 (2019).

    Article  CAS  Google Scholar 

  25. Zou, Y. et al. Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios. J. Mater. Sci. Technol. 85, 106–113 (2021).

    Article  CAS  Google Scholar 

  26. Rakhmonov, J., Liu, K., Rometsch, P., Parson, N. & Chen, X. Effects of Al (MnFe) Si dispersoids with different sizes and number densities on microstructure and ambient/elevated-temperature mechanical properties of extruded Al–Mg–Si AA6082 alloys with varying Mn content. J. Alloy Compd. 861, 157937 (2021).

    Article  CAS  Google Scholar 

  27. Miller, M. K., Russell, K. F. & Hoelzer, D. T. Characterization of precipitates in MA/ODS ferritic alloys. J. Nucl. Mater. 351, 261–267 (2006).

    Article  CAS  Google Scholar 

  28. Darling, K. A. et al. Structure and mechanical properties of Fe–Ni–Zr oxide-dispersion-strengthened (ODS) alloys. J. Nucl. Mater. 467, 205–211 (2015).

    Article  CAS  Google Scholar 

  29. Oono, N., Ukai, S., Kondo, S., Hashitomi, O. & Kimura, A. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for gen. IV nuclear reactors. J. Nucl. Mater. 465, 835–841 (2015).

    Article  CAS  Google Scholar 

  30. Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016).

    Article  CAS  Google Scholar 

  31. Gleiter, H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000).

    Article  CAS  Google Scholar 

  32. Jing, K. et al. Excellent high-temperature strength and ductility of the ZrC nanoparticles dispersed molybdenum. Acta Mater. 227, 117725 (2022).

    Article  CAS  Google Scholar 

  33. Zhang, L., Ukai, S., Hoshino, T., Hayashi, S. & Qu, X. Y2O3 evolution and dispersion refinement in Co-base ODS alloys. Acta Mater. 57, 3671–3682 (2009).

    Article  CAS  Google Scholar 

  34. Chen, X. Y. et al. Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces. Acta Mater. 143, 107–120 (2018).

    Article  CAS  Google Scholar 

  35. Ribis, J. & de Carlan, Y. Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238–252 (2012).

    Article  CAS  Google Scholar 

  36. Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-controlled Processes Vol. 155 (Springer Science & Business Media, 2007).

  37. Shen, Y. F., Guan, R. G., Zhao, Z. Y. & Misra, R. D. K. Ultrafine-grained Al–0.2Sc–0.1Zr alloy: the mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion. Acta Mater. 100, 247–255 (2015).

    Article  CAS  Google Scholar 

  38. Zhou, J., Li, W., Zhao, B. & Ren, F. Direct measurement of the maximum pinning force during particle–grain boundary interaction via molecular dynamics simulations. Acta Mater. https://doi.org/10.1016/j.actamat.2018.01.057 (2018).

  39. Nes, E., Ryum, N. & Hunderi, O. On the Zener drag. Acta Metall. 33, 11–22 (1985).

    Article  CAS  Google Scholar 

  40. Chen, L. et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528, 539–543 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, X. et al. Formation of the orientation relationship-dependent interfacial carbide in Al matrix composite affected by architectured carbon nanotube. Acta Mater. 228, 117758 (2022).

    Article  CAS  Google Scholar 

  42. Huang, L. et al. Multiscale architecture and superior high‐temperature performance of discontinuously reinforced titanium matrix composites. Adv. Mater. 33, 2000688 (2021).

    Article  CAS  Google Scholar 

  43. Wang, S. et al. Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50, 2119–2125 (2012).

    Article  CAS  Google Scholar 

  44. Liu, J. et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater. 20, 4175–4181 (2010).

    Article  CAS  Google Scholar 

  45. Liu, G., Wang, Y., Jiao, L. & Yuan, H. Solid-state synthesis of amorphous TiB2 nanoparticles on graphene nanosheets with enhanced catalytic dehydrogenation of MgH2. Int. J. Hydrog. Energy 39, 3822–3829 (2014).

    Article  CAS  Google Scholar 

  46. Xi, G. et al. Crystalline silicon carbide nanoparticles encapsulated in branched wavelike carbon nanotubes: synthesis and optical properties. J. Phys. Chem. B 109, 13200–13204 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Feng, Y. et al. Epitaxy of single‐crystalline GaN film on CMOS‐compatible Si (100) substrate buffered by graphene. Adv. Funct. Mater. 29, 1905056 (2019).

    Article  CAS  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Perdew, J. P., Burke, K. & Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533–16539 (1996).

    Article  CAS  Google Scholar 

  51. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the Chinese National Natural Science Fund for Distinguished Young Scholars, grant no. 52025015 (C.H.), and the National Natural Science Foundation of China, grant nos. U23A20546 (N.Z.), 52071230 (C.H.), 52130105 (N.Z.) and 52101181 (X.Z.).

Author information

Authors and Affiliations

Authors

Contributions

C.H. and X.Z. initiated and supervised the project. X.B. prepared the materials and carried out most of the microscopy experiments. X.B. and X.R. conducted the XRD measurements and mechanical property testing. D.Z. and S.J. did the APT examination and data analysis. H.X. and E.L. did the DFT calculations. N.Z., D.Z. and X.R. provided helpful discussions. All authors extensively discussed the data. C.H., X.Z. and X.B. wrote the paper. All authors critically reviewed the results and edited the paper drafted by the corresponding authors.

Corresponding authors

Correspondence to Xiang Zhang or Chunnian He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Niaz Abdolrahim, Alexis Deschamps and Xiaochun Li for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Tables 1 and 2, and Notes 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Xie, H., Zhang, X. et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys. Nat. Mater. 23, 747–754 (2024). https://doi.org/10.1038/s41563-024-01884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01884-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing