Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled soft alloy with Frank–Kasper phases beyond metals

Abstract

Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank–Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The μ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the ϕ phase exhibits a structure distinct from known Frank–Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of ‘soft alloy’ structures that were previously unattainable in metal alloys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characteristics and prevalence of FK phases across material systems.
Fig. 2: Chemical structures and hierarchical self-assembly from discrete molecules to phases based on mesoatoms.
Fig. 3: Structural characterizations.
Fig. 4: Evolution of key FK phases (FK phases that globally consisted of one tiling mode at all vertices).
Fig. 5: Formation mechanism of μ and ϕ phases.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within this article and its Supplementary Information. The data that support the findings of this study are publicly available through figshare at https://doi.org/10.6084/m9.figshare.23497661.

Code availability

The atomic coordinates of the optimized computational models are publicly available through figshare at https://doi.org/10.6084/m9.figshare.23497661. The script for data analysis is available through GitHub at https://github.com/xy-0/molecular-pentagon.

References

  1. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Strogatz, S. et al. Fifty years of ‘More is different’. Nat. Rev. Phys. 4, 508–510 (2022).

    Article  Google Scholar 

  3. Lee, S., Leighton, C. & Bates, F. S. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one-component materials. Proc. Natl Acad. Sci. USA 111, 17723–17731 (2014).

  4. Reddy, A. et al. Stable Frank–Kasper phases of self-assembled, soft matter spheres. Proc. Natl Acad. Sci. USA 115, 10233–10238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kittel, C. Kittel’s Introduction to Solid State Physics, Global Edition 8th edn (Wiley, 2005).

  6. Frank, F. C. & Kasper, J. S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. 11, 184–190 (1958).

    Article  CAS  Google Scholar 

  7. Frank, F. C. & Kasper, J. S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 12, 483–499 (1959).

    Article  CAS  Google Scholar 

  8. Reed, R. C. The Superalloys: Fundamentals and Applications (Cambridge Univ. Press, 2008).

  9. Stewart, G. R. Superconductivity in the A15 structure. Physica C Supercond. 514, 28–35 (2015).

  10. Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Weaire, D. & Phelan, R. A counter-example to Kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett. 69, 107–110 (1994).

    Article  CAS  Google Scholar 

  12. Montis, R. et al. Complex structures arising from the self-assembly of a simple organic salt. Nature 590, 275–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y., Takeya, S. & Sum, A. K. Topological dual and extended relations between networks of clathrate hydrates and Frank–Kasper phases. Nat. Commun. 14, 596 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koschnick, C. et al. Unlocking new topologies in Zr-based metal–organic frameworks by combining linker flexibility and building block disorder. J. Am. Chem. Soc. 145, 10051–10060 (2023).

  15. Kim, K. et al. Thermal processing of diblock copolymer melts mimics metallurgy. Science 356, 520–523 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, M. et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 348, 424–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Hudson, S. D. et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 278, 449–452 (1997).

    Article  CAS  Google Scholar 

  18. Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank–Kasper sigma phase in sphere-forming block copolymer melts. Science 330, 349–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Su, Z. et al. Identification of a Frank–Kasper Z phase from shape amphiphile self-assembly. Nat. Chem. 11, 899–905 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, H. et al. Clathrate colloidal crystals. Science 355, 931–935 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Ducrot, E., He, M., Yi, G. R. & Pine, D. J. Colloidal alloys with preassembled clusters and spheres. Nat. Mater. 16, 652–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Xiao, C., Fujita, N., Miyasaka, K., Sakamoto, Y. & Terasaki, O. Dodecagonal tiling in mesoporous silica. Nature 487, 349–353 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Girard, M. et al. Particle analogs of electrons in colloidal crystals. Science 364, 1174–1178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, S. et al. The emergence of valency in colloidal crystals through electron equivalents. Nat. Mater. 21, 580–587 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Gabbrielli, R., Meagher, A. J., Weaire, D., Brakke, K. A. & Hutzler, S. An experimental realization of the Weaire–Phelan structure in monodisperse liquid foam. Philos. Mag. Lett. 92, 1–6 (2012).

    Article  CAS  Google Scholar 

  29. Bain, E. C. & Griffiths, W. E. Introduction to the iron–chromium–nickel alloys. Trans. AIME 75, 166–211 (1927).

  30. Dutour Sikiric, M., Delgado-Friedrichs, O. & Deza, M. Space fullerenes: a computer search for new Frank–Kasper structures. Acta Crystallogr. A 66, 602–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Xie, H. et al. Two-dimensional Frank–Kasper Z phase with one unit-cell thickness. Nano Lett. 21, 7198–7205 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Balmbra, R. R., Clunie, J. S. & Goodman, J. F. Cubic mesomorphic phases. Nature 222, 1159–1160 (1969).

    Article  CAS  Google Scholar 

  33. Ungar, G., Liu, Y., Zeng, X., Percec, V. & Cho, W. D. Giant supramolecular liquid crystal lattice. Science 299, 1208–1211 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, Y. et al. Expanding quasiperiodicity in soft matter: supramolecular decagonal quasicrystals by binary giant molecule blends. Proc. Natl Acad. Sci. USA 119, e2115304119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng, X. et al. A columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells. Nat. Chem. 15, 625–632 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Arnfelt, H. & Westgren, A. Crystal structure and composition of the intermediate phases present in iron–tungsten and iron–molybdenum alloys. Jernkontorets Ann. 119, 185–196 (1935).

  37. Cheong, G. K., Bates, F. S. & Dorfman, K. D. Symmetry breaking in particle-forming diblock polymer/homopolymer blends. Proc. Natl Acad. Sci. USA 117, 16764–16769 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wentz, C. M., Lachmayr, K. K., Tsai, E. H. R. & Sita, L. R. Rapid phase transitions of thermotropic glycolipid quasicrystal and Frank–Kasper mesophases: a mechanistic Rosetta Stone. Angew. Chem. Int. Ed. 62, e202302739 (2023).

    Article  CAS  Google Scholar 

  39. Zhang, C. et al. Emergence of hexagonally close-packed spheres in linear block copolymer melts. J. Am. Chem. Soc. 143, 14106–14114 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, H. J., Zhang, S. & Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev. 44, 3900–3923 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Jun, T. et al. Mesoscale Frank–Kasper crystal structures from dendron assembly by controlling core apex interactions. J. Am. Chem. Soc. 143, 17548–17556 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Jayaraman, A., Baez-Cotto, C. M., Mann, T. J. & Mahanthappa, M. K. Dodecagonal quasicrystals of oil-swollen ionic surfactant micelles. Proc. Natl Acad. Sci. USA 118, e2101598118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan, X. Y. et al. Superlattice engineering with chemically precise molecular building blocks. J. Am. Chem. Soc. 143, 21613–21621 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y. et al. Mesoatom alloys via self-sorting approach of giant molecules blends. Giant 4, 100031 (2020).

    Article  Google Scholar 

  45. Yan, X.-Y. et al. Guidelines for superlattice engineering with giant molecules: the pivotal role of mesoatoms. Phys. Rev. Mater. 7 120302 (2023).

  46. Nelson, D. R. Order, frustration, and defects in liquids and glasses. Phys. Rev. B 28, 5515–5535 (1983).

    Article  CAS  Google Scholar 

  47. Yuan, Y. et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat. Mater. 21, 95–102 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    Article  CAS  Google Scholar 

  49. Lee, S. et al. Pseudo-fivefold diffraction symmetries in tetrahedral packing. Chemistry 19, 10244–10270 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Graef, M. D. & Mchenry, M. E. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry 2nd edn (Cambridge Univ. Press, 2012).

  51. Harper, E. S., van Anders, G. & Glotzer, S. C. The entropic bond in colloidal crystals. Proc. Natl Acad. Sci. USA 116, 16703–16710 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vo, T. & Glotzer, S. C. A theory of entropic bonding. Proc. Natl Acad. Sci. USA 119, e2116414119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sadoc, J.-F. & Mosseri, R. Geometrical Frustration (Cambridge Univ. Press, 1999).

  54. Nelson, D. R. & Spaepen, F. Polytetrahedral order in condensed matter. Solid State Phys. 42, 1–90 (1989).

    Article  CAS  Google Scholar 

  55. Ilavsky, J. Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 45, 324–328 (2012).

    Article  CAS  Google Scholar 

  56. Rycroft, C. H. VORO++: a three-dimensional voronoi cell library in C++. Chaos 19, 041111, (2009).

  57. Rycroft, C. H., Grest, G. S., Landry, J. W. & Bazant, M. Z. Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E 74, 021306 (2006).

    Article  Google Scholar 

  58. Berger, R. F., Walters, P. L., Lee, S. & Hoffmann, R. Connecting the chemical and physical viewpoints of what determines structure: from 1-D chains to gamma-brasses. Chem. Rev. 111, 4522–4545 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. S. Siegel, R.-Q. Lu, F. A. Spaepen, S. Wang, S. Li, B. Deng and D. R. Nelson for their helpful discussion or technical assistance; the staff of Beamline BL16B1 at the Shanghai Synchrotron Radiation Facility for assistance with the small-angle X-ray scattering experiments; and the Massachusetts Institute of Technology Materials Research Laboratory for providing the software. We also thank the National Science Foundation (DMR-1408872 to S.Z.D.C.), the National Natural Science Foundation of China (U1832220 to S.Z.D.C.), the Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices (2019B121203003 to S.Z.D.C.), the Recruitment Program of Guangdong (51890871 to S.Z.D.C.) and Fundamental Research Funds for the Central Universities (2019JQ05 to M.H.) for funding support.

Author information

Authors and Affiliations

Authors

Contributions

X.-Y.Y. and S.Z.D.C. conceptualized the study. X.-Y.L. and X.-Y.Y. provided synthesis. X.-Y.Y. provided structural characterization. X.-Y.Y. and X.K. performed simulation. X.-Y.L., X.-Y.Y. and Yicong Wang performed vizualisation. X.-Y.L., X.-Y.Y., Y.L., Yu Wang, M.H., Z.L., E.W.M., T.A., X.K. and S.Z.D.C. performed the formal analysis. Y.L., H.Q., Yicong Wang, J.W., Q.-Y.G., H.L., X.-H.L., F.B. and R.Z. provided resources. X.-Y.Y. and S.Z.D.C. performed project administration. S.Z.D.C. provided supervision. X.-Y.L., X.-Y.Y. and S.Z.D.C. wrote the original paper. X.-Y.L., X.-Y.Y., Y.L., H.Q., Yicong Wang, J.W., Q.-Y.G., H.L., X.-H.L., F.B., X.-Y.C., R.Z., Yu Wang, M.H., Z.L., E.W.M., T.A., X.K. and S.Z.D.C. reviewed and edited the paper.

Corresponding authors

Correspondence to Xiao-Yun Yan, Xian Kong or Stephen Z. D. Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Text, Figs. 1–30, Tables 1–11 and References.

Supplementary Data

The crystal lattices proposed for the two phases investigated in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Yan, XY., Liu, Y. et al. Self-assembled soft alloy with Frank–Kasper phases beyond metals. Nat. Mater. 23, 570–576 (2024). https://doi.org/10.1038/s41563-023-01796-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01796-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing