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Revealing emergent magnetic charge in an 
antiferromagnet with diamond quantum 
magnetometry

Anthony K. C. Tan    1,5  , Hariom Jani    2,3,5  , Michael Högen1,5, 
Lucio Stefan    1,4, Claudio Castelnovo    1, Daniel Braund    1, Alexandra Geim    1, 
Annika Mechnich    1, Matthew S. G. Feuer    1, Helena S. Knowles1, 
Ariando Ariando    3, Paolo G. Radaelli    2   & Mete Atatüre    1 

Whirling topological textures play a key role in exotic phases of magnetic 
materials and are promising for logic and memory applications. In 
antiferromagnets, these textures exhibit enhanced stability and faster 
dynamics with respect to their ferromagnetic counterparts, but they are 
also difficult to study due to their vanishing net magnetic moment. One 
technique that meets the demand of highly sensitive vectorial magnetic field 
sensing with negligible backaction is diamond quantum magnetometry. 
Here we show that an archetypal antiferromagnet—haematite—hosts a rich 
tapestry of monopolar, dipolar and quadrupolar emergent magnetic charge 
distributions. The direct read-out of the previously inaccessible vorticity 
of an antiferromagnetic spin texture provides the crucial connection to its 
magnetic charge through a duality relation. Our work defines a paradigmatic 
class of magnetic systems to explore two-dimensional monopolar 
physics, and highlights the transformative role that diamond quantum 
magnetometry could play in exploring emergent phenomena in  
quantum materials.

Topologically protected states in magnetic materials are promising 
candidates for next-generation spintronics architectures1,2. In particu-
lar, topological textures in antiferromagnets (AFMs) could provide 
additional advantages over their ferromagnetic counterparts including 
enhanced stability as well as faster and richer dynamics3–17. However, 
the vanishing net moment renders the detection of AFM textures dif-
ficult. Synchrotron-based dichroic X-ray techniques are at the imag-
ing forefront and have—for the first time—revealed the existence of 
two-dimensional (2D) topological AFM spin textures in haematite, 
namely, α-Fe2O3 (refs. 18,19). Although sensitive to staggered magneti-
zation, this technique is insensitive to its sign and thus the associated 
vorticity, that is, the whirling of the spin textures is not observed.

When viewed through the lens of canted magnetization, instead 
of the Néel vector, we uncover weak magnetic fields emanating from 
the divergence of the canted moments. Such fields can be equivalently 
described by the magnetic analogue of Gauss’s law20, thereby pointing 
to the existence of emergent magnetic charges in a topologically rich 
AFM landscape. Diamond quantum magnetometry (DQM), employing 
a single nitrogen-vacancy (NV) colour centre as a point field sensor, 
enables weak field sensing21–25, thereby putting it in a unique position 
to study the above proposed concept of emergent magnetic charges 
in a new class of magnetic materials—canted AFMs.

In this Article, we demonstrate the DQM imaging of topological 
textures in the AFM α-Fe2O3 and show that these textures host a rich 
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where * indicates convolution; αi (i = xy, z) are the effective point spread 
functions32; t is the film thickness; d is the height above the film surface; 
and m⃗ xy  and mz are the in-plane and out-of-plane components of m⃗, 
respectively. m⃗ xy and mz contribute to Bz through the divergence and 
Laplacian, respectively. The αi functions account for the magnetic field 
decay above the surface, acting as blurring kernels with size of ~d. 
Hence, the spatial resolution of DQM is set by the NV-sample distance 
dNV (Supplementary Section 3). Due to DMI symmetry in α-Fe2O3  
(Supplementary Section 5), mz = 0 and m⃗ xy ≠ 0, rendering the second 
term in equation (1) zero. Therefore, Bz images are the divergence  
of the canted magnetization ⃗∇ ⋅m⃗ xy , convolved with αxy. Moreover,  
for a ̂z-oriented DMI, the net magnetization is given by m⃗ = Δ( ̂z × ⃗l ), 
where Δ is the DMI-set canting angle. This yields the expression  
⃗∇ ⋅m⃗ xy = Δ[ ̂z ⋅ ( ⃗∇ × ⃗l )]  (Supplementary Section 5). The striking con

sequence is that the Bz images also offer a projected measure of  
staggered vorticity, that is, the curl of the Néel vector ⃗𝒱𝒱 = ⃗∇ × ⃗l .

Characteristic field signatures and vorticity 
read-out
After establishing the relationship between Bz and m⃗ xy, next we show 
that the images obtained in Fig. 1 are produced by AFM antiphase 
domain walls (ADWs), merons, antimerons and bimerons—consistent 
with recent observations in α-Fe2O3 (ref. 18). Below TM, we model the 
Bz images with a linear AFM domain wall18, characterized by width w 
and phase ξa (Supplementary Section 5.1). The phase ξa controls  
the spatial variation of ⃗l , resulting in an AFM Néel (a-Néel) or an  
AFM Bloch (a-Bloch) ADW profile for (ξa = 0, π) and (ξa =

π
2

, 3π
2

), res
pectively. For a linear ADW profile centred at x = 0 along the x axis, 
⃗∇ ⋅m⃗ xy =  mΔ (

π
w
) sin ( πx

w
) sin(ξa)  for |x| ≤ w

2
, and zero elsewhere18  

(Supplementary Section 5.1). Hence, we expect ADWs to display a sinu-
soidal profile in ⃗∇ ⋅m⃗ xy and in Bz, with zero crossing at the centre, and 
amplitude and sign modulated by sin(ξa). In particular, an a-Néel ADW 
will not yield a Bz signal as ⃗∇ ⋅m⃗ xy = 0, whereas an a-Bloch counterpart 
will show the maximal signal. Based on equation (1), these charac
teristics are reflected in the calculated Bz image of an ADW model in 
Fig. 2a (Supplementary Section 5.4), assuming a phase of ξa = π. The 
measured Bz image (Fig. 1i) and a close-up image (Fig. 2b) capture the 
signature zero crossing of an ADW. DQM also reveals variations in Bz 
along the wall boundary, capturing the spatially varying phase ξa in 
α-Fe2O3 (ref. 18). This phase dependence of Bz allows the unambiguous 
identification of the zero-signal sections along the wall with varying ξa 
as a-Néel ADWs. Figure 2c presents a reconstruction of the m⃗ xy distri-
bution of the multi-chiral ADW (illustrated by arrows), obtained  
by fitting Bz to the data in Fig. 2b through systematic regularization 
(Supplementary Section 7).

In contrast, DQM at 300 K captures larger spatial features of a 
strong Bz signal (Fig. 1j). In the above-TM regime, we anticipate finite 
net magnetization forming whirling topological structures, such as 
multi-chiral merons and antimerons18, as well as topologically trivial 
in-plane domain walls. Topological textures can be characterized by 
the topological charge 𝒬𝒬 and topological winding 𝒩𝒩 . Each AFM texture 
produces a distinctive Bz signal, allowing us to develop a systematic 
procedure to differentiate them (Supplementary Section 5). Here we 
focus on 2D topological textures and model isolated (anti)merons 
based on a linear ansatz18,33, described by phase ξa and winding number 
𝒩𝒩  (Supplementary Section 5.3). The corresponding divergence in  
polar coordinates (r, ϕ) is ⃗∇ ⋅m⃗ xy = mΔ sin (ϕ(1 −𝒩𝒩) 𝒩 ξa) f(r), where 
f(r) is a radial function dependent on the (anti)meron phase (Supple-
mentary Section 5.3). A meron (𝒩𝒩 = +1) produces a radially symmetric 
Bz distribution about its core with magnitude and polarity controlled 
by sin(ξa). Analogous to ADWs, a-Néel merons (ξa = 0, π) are divergence- 
free and exhibit Bz = 0, whereas a-Bloch counterparts (ξa =

π
2

, 3π
2
)  

show the maximal Bz amplitude. In contrast, for an antimeron (𝒩𝒩 = −1), 
the Bz distribution is two-fold symmetric and ξa controls an azimuthal 
offset. The calculated Bz images in Fig. 2d,g,j of the a-Bloch meron 

tapestry of magnetic charge distribution. In particular, the duality 
relation between staggered vorticity and magnetic charge allows us 
to associate the AFM Bloch meron with a spatially extended emergent 
magnetic monopole. Distinct from emergent magnetic monopoles in 
other realizations, such as spin ice26, we observe that the positively and 
negatively charged monopolar textures are topologically equivalent, 
whereas the topological antiparticle (AFM antimeron) has a quadru
polar character. Our results demonstrate the potential of DQM to 
discover and investigate emergent magnetic phenomena.

Properties of α-Fe2O3 and DQM
Haematite α-Fe2O3 is an AFM oxide insulator, which hosts a variety of 
topological spin textures18,27,28. Figure 1a illustrates the atomic structure 
of α-Fe2O3. It comprises a stack of anti-parallel ferromagnetic sublat-
tices along the c axis, with magnetization textures M⃗ 1 and M⃗ 2 (Fig. 1b). 
Spin re-orientation occurs at the Morin transition temperature, 
TM ≈ 200 K (ref. 18) (Supplementary Section 1); below and above TM, 
the ferromagnetic sublattices lie predominantly out of plane and in 
plane, respectively. The Néel vector ⃗l = M⃗ 1 −M⃗ 2  characterizes the  
AFM order, whereas m⃗ = M⃗ 1 +M⃗ 2 is the net magnetization (Fig. 1c,d). 
Above TM, m⃗ has a predominantly in-plane orientation with an average 
magnitude mΔ ≈ 2 × 103 A m–1. This weak magnetization is due to the 
slight in-plane canting of Δ ≈ 1.1 mrad (Supplementary Section 1) 
between M⃗ 1 and M⃗ 2, as a consequence of the bulk Dzyalonshinskii–
Moriya interaction (DMI) vector along the c axis29 (Supplementary  
Section 5). Consequently, m⃗ lies in plane and satisfies m⃗ ⋅ ⃗l = 0 .  
Since mΔ is much weaker than | ⃗l |, this weak magnetization has no  
discernible effect on the AFM character of α-Fe2O3. Finally, m⃗  vanishes 
where ⃗l  turns out of plane below TM or due to the formation of AFM  
spin textures.

We quantify the magnetic field distribution from these spin tex-
tures via DQM (Supplementary Section 2). Figure 1e illustrates our 
diamond probe hosting a single NV centre, which is scanned at a con-
stant height above the sample. The NV centre is a spin defect with a 
paramagnetic ground-state manifold and state-selective optical transi-
tions. This allows the Zeeman splitting between the ground states |±1〉 
and |0〉 to be probed with a microwave frequency fmw sweep and optical 
excitation via optically detected magnetic resonance (ODMR). In the 
weak-field approximation30 with negligible strain, we infer the magnetic 
field projected onto the NV axis (BNV) from the energy difference 
between |0〉 and |+1〉 given by ∆E+ = h(| f+ − D| − ̃γBbias) = h ̃γBNV ,  
where h is Planck’s constant, f+ is the resonant frequency corresponding 
to the transition, D ≈ 2.87 GHz and ̃γ  = 28 MHz mT–1. A bias field 
Bbias ≈ 0.5 mT is applied along the NV axis to enable the extraction of 
field orientation. Figure 1g,h illustrates the variation in ODMR fre-
quency across a linescan over the α-Fe2O3 surface at T = 4 and 300 K, 
respectively. The colour plot displays the signal amplitude, whereas 
the white curves demarcate f+ used to extract BNV. An ODMR raster scan 
across the sample surface provides a BNV image. We transform this  
to the laboratory coordinates (Bx,y,z) via the Fourier reconstruction 
technique31, where z coincides with the c axis of the crystal. Figure 1i,j 
presents images of Bz collected at 4 and 300 K, respectively. The 
observed qualitative differences reveal distinct magnetic phases for 
temperatures below and above TM (ref. 18). The image below TM com-
prises narrow features in an almost-zero field background, consistent 
with the absence of net magnetization. By contrast, the image above 
TM displays larger features within a non-zero field background, 
expected from a non-zero net magnetization.

Emergent properties in α-Fe2O3
To gain a physical interpretation of magnetization distribution from 
the measured Bz images, we begin from a thin-film approximation  
(Supplementary Section 4.1):

Bz = αxy(t,d) ∗ ⃗∇ ⋅m⃗ xy + αz(t,d) ∗ ∇2mz, (1)

http://www.nature.com/naturematerials
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model of both polarities and the antimeron model reinforce these 
observations (Supplementary Section 5.4). Thus, DQM unambiguously 
reveals the topological winding number 𝒩𝒩  and staggered vorticity ⃗𝒱𝒱  
for each spin texture. DQM cannot distinguish the sign of the topologi-
cal charge of the spin texture due to the vanishing canted moment at 
its core. Figure 2e,h,k presents the measured Bz images of an 

anti-clockwise a-Bloch meron (𝒩𝒩 = +1, ξa = π/2), a clockwise a-Bloch 
meron (𝒩𝒩 = +1, ξa = 3π/2) and an antimeron (𝒩𝒩 = −1), respectively, 
in good agreement with their modelled counterparts. Further, in Fig. 
2f,i,l, we reconstruct the m⃗ xy distributions and use them to calculate 
the measured Bz image for each texture discussed above (Supplemen-
tary Section 7). Given the density of spin textures evident in Fig. 1j, the 
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Fig. 1 | Signatures of emergent magnetic fields in α-Fe2O3. a, Atomic structure 
of α-Fe2O3 (Fe and O atoms in the yellow/green and grey spheres, respectively).  
b, Discrete representation of the alternating ferromagnetic sublattice 
magnetization M⃗ 1 (yellow cones) and M⃗ 2 (green cones) with AFM coupling along 
the c axis shown in a. c, Illustration of the whirling staggered magnetization l⃗  
(grey cones), forming an anti-clockwise a-Bloch meron, and the resultant canted 
magnetic moment m⃗ (red cones). d, Illustration showing the relationship 
between l⃗, m⃗, M⃗ 1 and M⃗ 2 and the canting angle Δ. e, A scanning diamond sensor 
with a single NV centre maps out the magnetic ( B⃗) field generated near the 
sample surface. f, Energy diagram of the NV ground states (GS) of |±1〉 and |0〉 

sublevels. A microwave field drives the GS spin transition, whereas a 532 nm laser 
excites the NV to the excited state (ES) (green arrow). The NV then undergoes a 
radiative decay to GS (red arrow) or a non-radiative and spin-selective path via 
the intersystem crossing (ISC) (blue arrow), enabling ODMR acquisition.  
g,h, ODMR (mapped as the normalized photoluminescence (PL)) along the 
fast-scan direction, measured on the α-Fe2O3 thin film at T = 4 K (g) and across  
TM at 300 K (h). The fitted f+(BNV) is plotted as a white line in each panel. i,j, Bz 
images retrieved from fitted BNV maps reveal distinct field signatures across TM. 
The dashed lines in i and j correspond to fitted BNV traces in g and h, respectively. 
Scale bars, 1 μm.
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reconstructed m⃗ xy approach better captures the finer details of the 
measured Bz images in the absence of true isolation. We note that 
although several simplifying steps are considered in our magnetization 
reconstruction (Supplementary Section 7), the insights presented in 
the main text, including those on staggered vorticity, remain valid. We 
further note that the density of (anti)merons can be reduced via 
meron–antimeron annihilation mediated by an external in-plane mag-
netic field18 (Supplementary Section 8). Finally, a meron and an antim-
eron in close proximity can form a stable bimeron. Figure 2m displays 
the corresponding calculated Bz image of an isolated bimeron model, 
whereas Fig. 2n shows the measured Bz image of one such occurrence. 
Similarly, Fig. 2o displays the calculated Bz image from its reconstructed 
m⃗ xy. Although (anti)merons are always topologically protected, this 
is not necessarily true for meron–antimeron pairs. Labelling a meron–
antimeron pair as topologically protected would require the knowledge 
of the topological charge sign of its constituents29,34.

Emergent magnetic charge
The fact that DQM provides a direct measure of ⃗∇ ⋅m⃗ xy creates a unique 
opportunity to consider a magnetic analogue of the electric Gauss’s 
law. Namely, the non-zero divergence of magnetization manifests the 
existence of an areal magnetic charge density via σm = −t( ⃗∇ ⋅m⃗ xy) . 
Here m⃗ xy is independent of t—valid in the thin-film limit18. Therefore, 
AFM textures in α-Fe2O3 have associated emergent magnetic charge 
distributions, which locally act as sources or sinks of the magnetic field. 
We can define a formal duality relation that connects the magnetic 
charge density σm to the staggered vorticity ⃗𝒱𝒱  via

σm/t = − ⃗∇ ⋅m⃗ xy = Δ( ̂z ⋅ ⃗𝒱𝒱 ), (2)

which scales with sin(ξa), highlighting the influence of the texture 
phase. Crucially, retrieving the emergent charge density σm only 

requires the Fourier deconvolution of the measured Bz images from the  
transfer function αxy (Supplementary Section 4.2). We can also perform 
a downward (upward) continuation35 (Supplementary Section 4.2)  
of the planar ⃗B  distribution captured in Fig. 2b,e,h,k,n, down to  
(away from) the sample surface. This allows a three-dimensional  
visualization of ⃗B  (= H⃗  in a vacuum) in the volume above the mag
netic charge distribution. Note that this charge and field retrieval 
process is independent of the m⃗ xy reconstruction and the linear meron 
model assumption.

Figure 3a–d illustrates the field lines of ⃗B  above the (anti-)clock-
wise a-Bloch meron, ADW and antimeron. For the two Bloch merons, 
⃗B  is consistent with the profile expected for spatially extended sources 

and sinks of the magnetic field emanating from a monopolar distribu-
tion, which we retrieved via equation (2) in Fig. 3e,f. This implies that 
a-Bloch merons host a class of emergent monopoles piggybacking on 
the topologically protected AFM textures. Interestingly, such mono
polar magnetic distributions are not observed in ferromagnetic  
materials, as the presence of long-range demagnetizing fields favours 
divergence-free Bloch textures. In our case, we are freed from this 
constraint due the presence of a weak demagnetizing contribution 
relative to the stronger AFM exchange in α-Fe2O3. In contrast to merons, 
the ADW in Fig. 3c and the antimeron in Fig. 3d are associated with σm 
distributions that exhibit dipolar and quadrupolar characters, respec-
tively (Fig. 3g,h). Finally, we emphasize that the observation of emer-
gent monopoles is fully consistent with the modelling of AFM 
topological textures in Fig. 2 and does not violate Maxwell’s equation 
as they are, in fact, sinks and sources of the H⃗  field. Although ⃗∇ ⋅H⃗ ≠ 0 
in the material, the condition of ⃗∇ ⋅ ⃗B = 0  is still conserved since 
⃗B = μ0(H⃗ +m⃗ )  and in the absence of any free electric current, 

∇ ⋅H⃗ = −∇ ⋅m⃗. Therefore, when probing the fields outside the material, 
where μ0H⃗ = ⃗B, one sees a field ⃗B  that appears as if it is emerging from 
sources and sinks given by ⃗∇ ⋅m⃗ (refs. 26,36,37).
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Based on the above analysis, it is tempting to attribute a non-zero 
net monopolar charge to isolated a-Bloch merons, quantified by 
Qm ≡ ∫SσmdS within area S. We pick a circular integration area S of radius 
r centred on a given spin texture. Figure 4a,b illustrates an example  
in the case of antimerons. The (1/r) dependence of ⃗∇ ⋅m⃗ xy  for 2D  
magnetic charges hosted by spin textures then yields (Supplementary 
Section 5.9)

Qm(r) =
⎧⎪
⎨⎪
⎩

2πmΔ sin(ξa) sin (
πr
2RM

) r t ,𝒩𝒩 𝒩 +1, r ≤ RM

2πmΔ sin(ξa) r t ,𝒩𝒩 𝒩 +1, r > RM.

0 ,𝒩𝒩 𝒩 −1

(3)

Figure 4c presents the radial dependence of Qm for four measured 
merons (light-blue dashed curves) and antimerons (light-red dashed 
curves), whereas the dark-blue (red) dashed curve is the average Qm 
radial dependence for merons (antimerons). For an isolated linear 
meron model, Qm scales linearly with r, and the measured Qm radial 
dependence is in agreement with this. Qm itself is not a topological 
invariant, as a smooth transformation of an a-Bloch meron to an a-Néel 
meron would tune Qm from non-zero to zero. For an isolated antim-
eron, the two-fold rotational symmetry ensures Qm = 0 for all r values 
(Supplementary Section 5.9) and at short distances, the experimental  
Qm value of an antimeron agrees well with this prediction. Beyond 
measurement-induced variations, deviation from the strict Qm = 0 
condition arises when an antimeron is influenced by neighbouring spin 
textures. This reduces the two-fold symmetry and reveals a finite Qm. 
Figure 4a,b captures this reduced symmetry as well as the consequential 
bias towards negative and positive Qm, respectively. Finally, as r goes 
to infinity, the integration area would overlap with the surrounding 
spin textures, leading to a further deviation from the Qm = 0 condition.

The assumption that we have a collection of isolated spin textures 
oversimplifies the reality. Although the AFM topological textures are 
mesoscopically discernible and thus appear localized, they are, in fact, 
the constituents of the complex multi-textural ensemble that interacts 
via a 2D magnetic charge canvas. The magnetic charge per constituent 
is not just dictated by their nature as merons and antimerons, but modi-
fied through their interaction with other constituents. For example, an 

isolated meron and antimeron pair forming an AFM bimeron (Fig. 2n) 
would have a non-zero Qm, whose sign is predominantly determined 
by its meron (Supplementary Section 5.9). However, this clearly can-
not be the case for a bimeron embedded in a uniform magnetization 
field in the far field (Supplementary Section 5.10), since the divergence 
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(g) and quadrupolar (h) charge character associated to an anti-clockwise a-Bloch 
meron, clockwise a-Bloch meron, ADW and antimeron, respectively. Scale bars, 
200 nm.
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Fig. 4 | Scaling of 2D integrated magnetic charges. a,b, Reconstructed 
magnetic charge distribution (σm) of two experimentally observed antimerons 
(AM 1 and AM 2) with slightly distorted quadrupolar characters. AM 1 and AM 2 
display a bias towards positive and negative charges, respectively. The dashed 
circle in a and b illustrates the circular integration area S of radius r, centred at the 
core of the antimeron, to obtain |Qm|. Scale bars, 200 nm. c, Experimentally 
retrieved magnitude of the total integrated magnetic charge of multiple merons 
(|Qm|M, light-blue dashed curves) and antimerons (|Qm|AM, light-red dashed curves) 
plotted as a function of integration radius r. Their average experimental |Qm| 
profiles, namely, |Qm|avgM  and |Qm|avgAM, are represented by dark-blue and dark-red 
curves, respectively. The solid black curves plot the theoretically predicted Qm 
radial dependence based on equation (3) for isolated merons and antimerons.
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theorem ensures that Qm = 0. This indicates that the interaction  
among AFM textures produces additional magnetic charge density 
away from the cores and highlights the interactive nature of this 
multi-textural ensemble.

Discussion and outlook
Our ability to identify the duality between topological AFM textures 
and magnetic charges is due to the direct read-out of staggered vor-
ticity enabled by DQM. Specifically, the NV centre senses the ampli-
tude of the magnetic field projected onto the NV axis, allowing us to 
deduce the three field components via their linear dependence. This 
enables us to independently reconstruct the magnetic charge and 
local magnetization. As such, we go beyond detecting antimerons and 
merons, to further distinguish between clockwise and anti-clockwise 
a-Bloch components, which otherwise appear indistinguishable in X-ray 
dichroic images. Our imaging approach can be extended to a wider 
family of topological textures, including skyrmions, a-Néel merons 
and bimerons, as well as distorted AFM textures that are otherwise 
divergence-free (Supplementary Section 5.6–5.8), relevant for topo-
logical AFM circuitry7,27,38.

Although haematite provides favourable conditions for DQM 
imaging due to spin canting, it is, by no means, unique among AFMs 
in possessing a weak net magnetization or quasi-isotropic spins in two 
dimensions. It may be possible to observe topological phenomenology 
in similar canted AFMs, including orthoferrites, orthochromites and 
iron borate39–42. In compensated AFMs without bulk DMI, staggered 
spin textures can also generate a local net magnetization, either stati-
cally or dynamically8,43,44. Moreover, DQM can be useful in detecting 
preferential vorticity in ultrathin films induced by interfacial interac-
tions—a key requirement for applications in topological spintronics27,28.

The reported duality between magnetic charges and topologi-
cal AFM textures sheds light on a new class of materials hosting 2D 
monopolar physics in contrast with other systems that harbour emer-
gent magnetic monopoles, such as the pyrochlore spin ice26. Although 
intriguing, monopoles in spin ice are intrinsically distinct, as they have 
an underlying gauge charge, which is topological and quantized. Con-
versely, the emergent magnetic charges in haematite are 2D, not quan-
tized and are topological in the sense that they dress topological AFM 
textures underpinning them. We have demonstrated that haematite 
supports a rich tapestry of interacting magnetic charge distributions 
that could open up new and complementary ways to detect, manipu-
late and functionalize—via their magnetic charge—AFM topological 
textures. Our capability to classify different AFM spin textures could 
be combined with conventional spin manipulation techniques such as 
spin torques, allowing for read-out and write-in schemes. Realizing this 
in a complex manifold of states endowed with highly nonlinear interac-
tions could be attractive for unconventional computing1,2. Finally, the 
intriguing physical insights revealed in α-Fe2O3 are a testament to the 
relevance and potential of DQM as a versatile table-top platform to 
explore emergent phenomena in AFMs and other quantum materials.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41563-023-01737-4.
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