Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis

Abstract

Ammonia (NH3) is a key commodity chemical for the agricultural, textile and pharmaceutical industries, but its production via the Haber–Bosch process is carbon-intensive and centralized. Alternatively, an electrochemical method could enable decentralized, ambient NH3 production that can be paired with renewable energy. The first verified electrochemical method for NH3 synthesis was a process mediated by lithium (Li) in organic electrolytes. So far, however, elements other than Li remain unexplored in this process for potential benefits in efficiency, reaction rates, device design, abundance and stability. In our demonstration of a Li-free system, we found that calcium can mediate the reduction of nitrogen for NH3 synthesis. We verified the calcium-mediated process using a rigorous protocol and achieved an NH3 Faradaic efficiency of 40 ± 2% using calcium tetrakis(hexafluoroisopropyloxy)borate (Ca[B(hfip)4]2) as the electrolyte. Our results offer the possibility of using abundant materials for the electrochemical production of NH3, a critical chemical precursor and promising energy vector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Investigation of the Ca-NRR.
Fig. 2: Electrochemical testing of the Ca-NRR in the flow cell.
Fig. 3: Isotope labelling experiments using 15N2 in 0.2 M Ca[B(hfip)4]2 in the flow cell.
Fig. 4: XPS investigation of the post-reaction cathode deposits without exposure to air at different argon-ion sputtering times.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information. Source data are provided with this paper.

References

  1. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 56 (2021).

    CAS  Google Scholar 

  2. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Google Scholar 

  3. Fu, X. B., Zhang, J. H. & Kang, Y. J. Recent advances and challenges of electrochemical ammonia synthesis. Chem. Catal. 2, 2590–2613 (2022).

    CAS  Google Scholar 

  4. Mineral Commodity Summaries 2022 (US Geological Survey, 2022).

  5. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    CAS  Google Scholar 

  6. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    CAS  Google Scholar 

  7. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    CAS  Google Scholar 

  8. Greenwood, N. N., Earnshaw, E. A. Chemistry of the Elements (Pergamon, 1984).

  9. Fichter, F., Girard, P.-L. & Erlenmeyer, H. Elektrolytische Bindung von komprimiertem Stickstoff bei gewöhnlicher Temperatur. Helv. Chim. Acta 13, 1228–1236 (1930).

    CAS  Google Scholar 

  10. Tsuneto, A., Kudo, A. & Sakata, T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem. Lett. 22, 851–854 (1993).

    Google Scholar 

  11. Tsuneto, A., Kudo, A. & Sakata, T. Lithium-mediated electrochemical reduction of high-pressure N2 to NH3. J. Electroanal. Chem. 367, 183–188 (1994).

    CAS  Google Scholar 

  12. Andersen, S. Z. et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy Environ. Sci. 13, 4291–4300 (2020).

    CAS  Google Scholar 

  13. Cai, X. Y. et al. Lithium-mediated electrochemical nitrogen reduction: mechanistic insights to enhance performance. iScience 24, 103105 (2021).

    CAS  Google Scholar 

  14. Lazouski, N., Chung, M. J., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    CAS  Google Scholar 

  15. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    CAS  Google Scholar 

  16. Li, K. et al. Increasing current density of Li-mediated ammonia synthesis with high surface area copper electrodes. ACS Energy Lett. 7, 36–41 (2022).

    CAS  Google Scholar 

  17. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    CAS  Google Scholar 

  18. Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule 3, 1127–1139 (2019).

    CAS  Google Scholar 

  19. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    CAS  Google Scholar 

  20. Du, H. L. et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature 609, 722–727 (2022).

    CAS  Google Scholar 

  21. Li, S. et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid–electrolyte interphase. Joule 6, 2083–2101 (2022).

    CAS  Google Scholar 

  22. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    CAS  Google Scholar 

  23. Frank, A. R. On the utilisation of the atmospheric nitrogen in the production of calcium cyanamide, and its use in agriculture and chemistry. Trans. Faraday Soc. 4, 99–114 (1908).

    Google Scholar 

  24. Rösch, B. et al. Dinitrogen complexation and reduction at low-valent calcium. Science 371, 1125–1128 (2021).

    Google Scholar 

  25. Chen, X. Y. et al. Oxygen vacancy engineering of calcium cobaltate: a nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte. Nano Res. 14, 501–506 (2021).

    CAS  Google Scholar 

  26. Kibsgaard, J. et al. The difficulty of proving electrochemical ammonia synthesis. ACS Energy Lett. 4, 2986–2988 (2019).

    CAS  Google Scholar 

  27. Wang, D. et al. Plating and stripping calcium in an organic electrolyte. Nat. Mater. 17, 16–20 (2018).

    CAS  Google Scholar 

  28. Biria, S., Pathreeker, S., Genier, F. S., Li, H. S. & Hosein, I. D. Plating and stripping calcium at room temperature in an ionic-liquid electrolyte. ACS Appl. Energy Mater. 3, 2310–2314 (2020).

    CAS  Google Scholar 

  29. Melemed, A. M., Skiba, D. A. & Gallant, B. M. Toggling calcium plating activity and reversibility through modulation of Ca2+ speciation in borohydride-based electrolytes. J. Phys. Chem. C 126, 892–902 (2022).

    CAS  Google Scholar 

  30. Ta, K. et al. Understanding Ca electrodeposition and speciation processes in nonaqueous electrolytes for next-generation Ca-ion batteries. ACS Appl. Mater. Interfaces 11, 21536–21542 (2019).

    CAS  Google Scholar 

  31. Ponrouch, A., Frontera, C., Barde, F. & Palacin, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).

    CAS  Google Scholar 

  32. Shyamsunder, A., Blanc, L. E., Assoud, A. & Nazar, L. F. Reversible calcium plating and stripping at room temperature using a borate salt. ACS Energy Lett. 4, 2271–2276 (2019).

    CAS  Google Scholar 

  33. Li, Z. Y., Fuhr, O., Fichtner, M. & Zhao-Karger, Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ. Sci. 12, 3496–3501 (2019).

    CAS  Google Scholar 

  34. Nielson, K. V., Luo, J. & Liu, T. L. Optimizing calcium electrolytes by solvent manipulation for calcium batteries. Batter. Supercaps 3, 766–772 (2020).

    CAS  Google Scholar 

  35. Bitenc, J. et al. Electrochemical performance and mechanism of calcium metal–organic battery. Batter. Supercaps 4, 214–220 (2021).

    CAS  Google Scholar 

  36. McShane, E. J. et al. A versatile Li0.5FePO4 reference electrode for nonaqueous electrochemical conversion technologies. ACS Energy Lett. 8, 230–235 (2022).

    Google Scholar 

  37. Vandoveren, H. & Verhoeven, J. A. T. XPS spectra of Ca, Sr, Ba and their oxides. J. Electron Spectrosc. Relat. Phenom. 21, 265–273 (1980).

    CAS  Google Scholar 

  38. Su, Y. G., Huang, S. S., Wang, T. T., Peng, L. M. & Wang, X. J. Defect-meditated efficient catalytic activity toward p-nitrophenol reduction: a case study of nitrogen doped calcium niobate system. J. Hazard. Mater. 295, 119–126 (2015).

    CAS  Google Scholar 

  39. Gao, W. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    CAS  Google Scholar 

  40. Wietelmann, U., Felderhoff, M. & Rittmeyer, P. Ullmanns Encyclopedia of Industrial Chemistry (Wiley, 2016).

  41. Il’inchik, E. A., Volkov, V. V. & Mazalov, L. N. X-ray photoelectron spectroscopy of boron compounds. J. Struct. Chem. 46, 523–534 (2005).

    Google Scholar 

  42. Prabakar, S. J. R. et al. Graphite as a long-life Ca2+-intercalation anode and its implementation for rocking-chair type calcium-ion batteries. Adv. Sci. 6, 1902129 (2019).

    Google Scholar 

  43. Park, J. et al. Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 32, 1904411 (2020).

    CAS  Google Scholar 

  44. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Google Scholar 

  45. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  46. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    CAS  Google Scholar 

  47. Hammer, B., Hansen, L. B. & Norskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Google Scholar 

  48. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Google Scholar 

  49. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  50. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  51. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

  52. Mathew, K. et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Google Scholar 

  53. Mathew, K. et al. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding by Villum Fonden, part of the Villum Center for the Science of Sustainable Fuels and Chemicals (V-SUSTAIN grant 9455), Innovationsfonden (E-ammonia grant 9067–00010B) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741860). X.F. was supported under the MSCA European Postdoctoral Fellowships (Electro-Ammonia Project 101059643). V.A.N. was supported under the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1656518 and the Camille and Henry Dreyfus Foundation. A.C.N. was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program through the SUNCAT Center for Interface Science and Catalysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of the work was by X.F., V.A.N., Y.Z., J.K.N., T.F.J. and I.C. Data curation was by X.F., V.A.N., Y.Z., J.B.P., S.L., K.Z., M.S. and K.E.-R. Formal analysis was carried out by X.F., V.A.N., Y.Z., P.B., K.Z., A.X., J.B.V.M., N.H.D. and A.C.N. Investigation was by X.F., V.A.N., Y.Z., S.L. and M.S. Equipment design was by X.F., V.A.N., M.S., J.B.P. and S.Z.A. Visualization was by X.F., V.A.N. and Y.Z. The project was supervised by I.C., T.F.J., J.K., P.C.K.V., J.K.N. and A.C.N. The original draft was written by X.F., V.A.N. and Y.Z., and the manuscript was reviewed and edited by X.F., V.A.N., Y.Z., S.Z.A., A.C.N., J.K., T.F.J. and I.C.

Corresponding authors

Correspondence to Jens K. Nørskov, Thomas F. Jaramillo or Ib Chorkendorff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–54, Tables 1–7 and refs. 1–17.

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Fig. 1b

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Niemann, V.A., Zhou, Y. et al. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis. Nat. Mater. 23, 101–107 (2024). https://doi.org/10.1038/s41563-023-01702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01702-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing