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Task-adaptive physical reservoir computing

Oscar Lee    1 , Tianyi Wei1, Kilian D. Stenning    2, Jack C. Gartside    2, 
Dan Prestwood    1, Shinichiro Seki3, Aisha Aqeel    4,5, Kosuke Karube    6, 
Naoya Kanazawa    3, Yasujiro Taguchi    6, Christian Back    4, 
Yoshinori Tokura3,6,7, Will R. Branford    2,8 & Hidekazu Kurebayashi    1,9,10 

Reservoir computing is a neuromorphic architecture that may offer 
viable solutions to the growing energy costs of machine learning. In 
software-based machine learning, computing performance can be 
readily reconfigured to suit different computational tasks by tuning 
hyperparameters. This critical functionality is missing in ‘physical’ reservoir 
computing schemes that exploit nonlinear and history-dependent 
responses of physical systems for data processing. Here we overcome this 
issue with a ‘task-adaptive’ approach to physical reservoir computing. By 
leveraging a  t he rmodynamical phase space to reconfigure key reservoir 
properties, we optimize computational performance across a diverse task 
set. We use the spin-wave spectra of the chiral magnet Cu2OSeO3 that hosts 
skyrmion, conical and helical magnetic phases, providing on-demand access 
to different computational reservoir responses. The task-adaptive approach 
is applicable to a wide variety of physical systems, which we show in other 
chiral magnets via above (and near) room-temperature demonstrations in 
Co8.5Zn8.5Mn3 (and FeGe).

Physical separation between processing and memory units in conven-
tional computer architectures causes substantial energy waste due to 
the repeated shuttling of data, known as the von Neumann bottleneck. 
To circumvent this, neuromorphic computing1,2, which draws inspira-
tion from the brain to provide integrated memory and processing, has 
attracted a great deal of attention as a promising future technology. 
Reservoir computing3–5 is a type of neuromorphic architecture with 
complex recurrent pathways (the ‘reservoir’) that maps input data to 
a high-dimensional space. Weights within the reservoir are randomly 
initialized and fixed, and only the small one-dimensional weight vector 
that connects the reservoir to the output requires optimization using 
computationally cheap linear regression. As such, reservoir computing 
can achieve powerful neuromorphic computation at a fraction of the 
processing cost relative to other schemes, for example, deep neural 

networks, where the whole weight network (typically involving more 
than millions of nodes) must be trained6.

Although reservoir computing was originally conceived in soft-
ware3, nonlinear and history-dependent responses of physical systems 
have also been exploited as reservoirs7,8. The field of physical reservoir 
computing has been rapidly expanding with several promising demon-
strations using optical systems9, analogue electronic circuits10, mem-
ristors11,12, ferroelectrics13, magnetic systems14–19 and even a bucket of 
water20. Skyrmions, topologically non-trivial magnetic whirls, have also 
been proposed as hosts for reservoir computing21–24 and experimentally 
demonstrated25–27 as part of rapidly growing research efforts towards 
neuromorphic computing using magnetic systems28–32.

Despite such rapid development, one of the outstanding chal-
lenges for creating powerful physical reservoirs is establishing a 
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Hlow, increasing to a high magnetic field Hhigh and comes back to a new 
Hlow, where their separation is defined by Hrange/2 with a centre field Hc. 
The individual field points (Hlow, Hmid and Hhigh) are modulated by the 
input functions tailored for specific tasks. For the transformation tasks, 
the input function is a sine curve encoded over 100 field cycles; our 
forecasting tasks use a chaotic oscillatory Mackey–Glass time series44 
to modulate the field-cycling base with N, as shown in the left panel of 
Fig. 1b (Methods). This scheme can be applied to input any time-series 
dataset into the physical reservoir.

To create a two-dimensional reservoir matrix, R(N, M), we use 
an experimental setup illustrated in the rightmost panel of Fig. 1a to 
measure the microwave reflection spectra S11 of Cu2OSeO3 crystals, 
recording M frequency channels between 1 and 6 GHz for each field 
cycle at Hlow labelled by N (Methods). Using this scheme, the physical 
reservoir effectively broadcasts a single field input value to multiple 
M values as frequency multiplexing. Figure 1c shows the spectral out-
put of our reservoir in response to input time-series datasets (left: 
Mackey–Glass, right: sine wave). The spectral states of each phase (left: 
skyrmion, right: conical) change as we perform field cycling—see the 
individual spectra sampled at different N values in Fig. 1c. Using S11(N, f) 
in the colour heatmap plots, we form R(N, M) as shown in the middle 
panel of Fig. 1a, where χij represents the magnetic susceptibility for 
each input field and frequency.

Using 70% of the reservoir response as the training dataset Rtrain 
shown in Fig. 1c, we perform ridge regression to calculate the weights 
Wout against a target function Y, where Y = RtrainWout. The calculated Wout 
and the remaining 30% of the reservoir Rtest are subsequently used to 
evaluate the reservoir performance via the MSE. Figure 1d exemplifies 
this final process of our reservoir computing protocol by showing the 
physical reservoir’s attempt (blue line) at reproducing the target signal 
(red dotted line) for two tasks: the left panel shows a forecast of the 
chaotic Mackey–Glass signal ten future steps ahead (MG(N + 10)); the 
right panel shows the nonlinear transformation of a sine-wave input 
to a square-wave target. For both tasks, the excellent performance 
of reservoir computing is confirmed by the low MSE values: 3.7 × 10−3 
for the forecasting task by the skyrmion reservoir; 7.3 × 10−7 for the 
transformation task by the conical reservoir. The virtue of the reservoir 
components can be assessed using these two values compared with 
those calculated by computing the same tasks without the reservoirs 
(grey curves): 6.2 × 102 and 5.4 × 102 for the forecasting and transforma-
tion tasks, respectively.

Phase-tunable physical reservoir computing
The phase-tunable nature of our physical reservoir computing stems 
from the rich magnetic phase diagram of Cu2OSeO3 shown in Fig. 2a 
ref. 37. Added to this diagram is the metastable skyrmion phase, which 
can be generated at low temperatures below ~35 K using quenching 
techniques or field-cycling protocols40–42. We leverage this phase tun-
ability to create the task-adaptive nature of our physical reservoir, as 
detailed below.

Figure 2b displays the N dependence of the spectra for Hc and 
temperature inside the skyrmion phase. For N = 100, a sharp peak 

methodology for task-adaptive control of reservoir properties8, often 
characterized by the nonlinearity, memory capacity and complexity 
metrics of the reservoir33–36. However, physical systems typically have 
a narrow and fixed set of reservoir properties without having much 
room to change, since the above metrics tend to be constrained to a 
particular response of a physical system. Because of this, a physical 
reservoir tends to perform well for some specific tasks but poorly for 
others, which require different reservoir properties. This is a severe 
drawback relative to software reservoirs, where such properties can 
be tuned by changing lines of code.

Here, we demonstrate task-adaptive reservoir computing using 
the spectral space of a physical system that has rich, phase-tunable 
dynamical modes. As a model system of this approach, we use spin 
resonances of the chiral magnet Cu2OSeO3 (refs. 37–39). Since differ-
ent magnetic phases (skyrmion, helical and conical phases) exhibit 
distinct resonances, they offer broadly varying reservoir properties 
and computing performance, which can be reconfigurably tuned via 
the magnetic field and temperature. We use magnetic field cycling40,41 
to input data and measure the spin-wave spectra at each input step 
to efficiently achieve high-dimensional mapping. By quantitatively 
assessing each phase as a reservoir, we find that the thermodynami-
cally metastable skyrmion phase has a strong memory capacity due 
to the magnetic field-driven gradual nucleation of skyrmions with 
an excellent performance in future prediction tasks. By contrast, the 
conical phase has modes with great reservoir nonlinearity and com-
plexity, which are ideal for transformation tasks. By making full use 
of this phase-tunable nature, we achieve a strong performance across 
a broad range of tasks in a single physical system. High-temperature 
demonstration of the task-adaptive physical reservoir concept using 
other chiral magnets, that is, Co8.5Zn8.5Mn3 and FeGe, indicates that the 
concept is indeed ubiquitous.

Reservoir computing scheme
Our physical reservoir (Fig. 1a) is constructed using the field- and 
temperature-dependent gigahertz spin dynamics of Cu2OSeO3  
(ref. 38). We apply a specific sequence of magnetic field inputs and 
map out the spin-wave spectra of Cu2OSeO3 to form a two-dimensional 
matrix18. Subsequently, the reservoir matrix is multiplied by a weight 
vector Wout to produce the individual output value for each input. We 
use standard ridge regression to optimize Wout for each task with train-
ing data. The trained reservoir is then run for the unseen test datasets 
to assess the reservoir computing performance via the mean squared 
error (MSE; see Methods). The rich phase diagram of Cu2OSeO3 offers 
multiple magnetic textural phases, including the thermodynamically 
metastable skyrmion phase40–43, each of which exhibits distinct spin 
dynamics properties. The task-adaptive nature of our physical reservoir 
comes from the reconfigurable on-demand control between these 
magnetic phases via both temperature and magnetic field.

As shown in Fig. 1b, the input layer consists of sequential magnetic 
field values, u′ = (H1, H2, H3, …, Hn), produced by projecting a given 
input function of each task onto the field. Taking the transformation 
task as an example, each field cycle N starts with a low magnetic field 

Fig. 1 | Working principles of physical reservoir computing with a chiral 
magnet. a, Illustration of a task-adaptive reservoir computing framework. 
Different magnetic phases are accessed by controlling the external magnetic 
field (H) and temperature (T). The rightmost panel shows the experimental 
schematic of the VNA-assisted spin-wave spectroscopy setup. VNA, vector 
network analyser. b, Typical input scheme for forecasting (left: Mackey–Glass 
signal) and transformation (right: sine wave) tasks. The original input signal, 
u(t), is mapped to u'(N), which is defined by the mapped field-cycling protocol 
(see main text and Methods for details). Note that Hrange defines the full range 
of applied fields, where the distance between Hlow and Hhigh at any given N, is 
the width of cycling, Hrange/2. A single field cycle is highlighted by the orange 
box in the transformation panel. c, S11 (denoted as ΔS11 after pre-processing; 

see Methods) as a function of the frequency f after accumulating N field cycles 
and visualization of R(N, M); a collective spectral evolution for N field cycles 
for skyrmion and conical phases, separated into ‘training’ and ‘test’ datasets. 
d, Results after applying Wout on the unseen ‘test’ dataset. Left: forecasting of 
a differential chaotic time-series data, Mackey–Glass signal by 10 future steps. 
Right: transformation of a sine wave to a square-wave signal. In both cases, 
reservoir prediction (transformation) results are plotted in blue (purple), the 
red dotted line depicts the target signal and the grey line represents the control 
prediction where ridge regression is performed on the raw input data without the 
physical reservoir. MSEFC and MSETR quantify the computation performance of 
forecasting and transformation, respectively.
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around 4 GHz can be clearly observed, corresponding to low-energy 
spin-wave modes of the thermodynamically stable conical phase39–41. As 
we cycle further, the conical mode amplitude shrinks and the skyrmion 
modes appear around 2–3 GHz, as highlighted by the grey curves for 
N = 130–170. These are the counterclockwise and breathing modes of 
the metastable low-temperature skyrmion phase generated by field 

cycling40,41. The mode frequencies move with our input magnetic fields, 
and as the cycling proceeds the skyrmions are continuously destroyed 
and renucleated, as evident from the peak amplitude. When we carry 
out experiments for different Hc values, we can clearly demonstrate 
the tunability of the magnetic phases for our reservoir computing, as 
shown in Fig. 2c where the spectra are obtained after 920 field cycles 
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with Hrange = 90 mT at 4 K. A similar tunability can be achieved by chang-
ing the temperature at a fixed Hc of 60 mT, as shown in Fig. 2d. The 
skyrmion modes are clearly identified for 4 K and 15 K and disappear 
for higher temperatures (25 K and 35 K), where the spectra are domi-
nated by those from the conical phase. Finally, a collection showing 
the field-cycle evolution of spectra for various Hc and temperatures is 
presented in Fig. 2e to demonstrate the range of phase/spectral tun-
ability. Individual spectral scans for further evolution of N as a variation 
of Hc can be found in Supplementary Fig. 3 (Supplementary Note 1).

Reservoir performance
Figure 3a–c compares the reservoir’s performance on different tasks 
using magnetic phases of skyrmion (Hc = 60 mT), skyrmion–conical  
hybrid (Hc = 98 mT) and conical modes (Hc = 185 mT) at 4 K with 
Hrange = 90 mT and N = 1,000. For forecasting, the system is trained 
to predict the future behaviour of a Mackey–Glass signal of ten steps 
ahead. The reservoir performance is evaluated quantitatively by calcu-
lating the MSE between the reservoir prediction and the target signal.

As shown in Fig. 3a, when Hc is increased and the reservoir is transfig-
ured from the skyrmion to the conical phase, the prediction performance 
deteriorates and the MSE increases by a factor of approximately 18.  

In the conical phase, the reservoir prediction is as bad as the one with-
out the reservoir. The opposite trend is observed for transformation 
tasks, where the MSE is notably improved when switching from the skyr-
mion reservoir to the conical reservoir, as shown in Fig. 3b. Although 
the skyrmion reservoir still performs well with an MSE of the order 
of 10−4, the conical reservoir excels with an MSE of 3.7 × 10−7 for the 
sine-to-saw transformation task. By setting Hc at 98 mT, we create 
a hybrid reservoir phase where both skyrmion and conical modes 
coexist. This particular reservoir configuration outperforms both the 
individual skyrmion and conical reservoirs for a complex forecasting–
transformation task of predicting ten future steps ahead for a cubed 
Mackey–Glass signal from a normal Mackey–Glass input shown in  
Fig. 3c. See Methods and Supplementary Note 3 for details of target 
generations and a broader selection of further forecasting and trans-
formation tasks, with a tunable reservoir performance demonstrated 
throughout in Supplementary Fig. 6.

Figure 3e–g maps the observed reservoir performance on the 
phase diagram, with Fig. 3d as an aid to reading these plots. The upper 
and lower whiskers represent the maximum and minimum magnetic 
field values in the cycling scheme, respectively. The height of the box 
represents Hrange, and the central line defines Hc. The MSE values are 
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Fig. 2 | Field-cycling-dependent spin-wave spectra as a physical reservoir.  
a, Schematic of the temperature phase diagram for the bulk crystal Cu2OSeO3. 
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conditions for our cycling experiments shown in c (d). b, The cycling number 
dependence of the spin-wave spectra in Cu2OSeO3 for Hc = 60 mT and 4 K. The 
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Grey lines are added as a guide to the eye to keep track of the skyrmion modes.  
c, Hc dependence of the spin-wave spectra in Cu2OSeO3 for 4 K after 920 field 
cycles. d, Temperature dependence of the spin-wave spectra for Hc = 60 mT after 
920 field cycles. e, Microwave absorption spectra as a function of f and N for 
different values of Hc at T = 4 K (upper row) and 35 K (lower row). The input signal 
in all plots is a sine wave with Hrange = 90 mT.
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encoded as the box colour. The initial cycle begins at the bottom of 
the lower whisker and gradually moves up and down as a function 
of N. Figure 3e shows the reservoir performance for forecasting MG 
(N + 10) at Hrange = 90 mT. The strongest performance is found when the 
field cycling lies entirely inside the skyrmion phase at lower tempera-
tures. The performance gradually worsens as the field cycling moves 
beyond the skyrmion phase and is reduced dramatically when leaving 
the skyrmion phase at high temperatures. This excellent forecasting 
performance of the skyrmion reservoir is highly correlated with its 
memory capacity, as we discuss below.

For the transformation tasks, we show the reservoir performance 
for two parameter dependencies, Hrange and Hc. In Fig. 3f, where a varia-
tion of Hrange for Hc = 73 mT is shown, it is clear for all measured tempera-
tures that larger Hrange values provide an optimal reservoir performance, 
maximizing the balance between the key reservoir properties associ-
ated with the tasks. In Fig. 3g, we observe that the reservoirs run with 
input mappings extending deeper into the helical phase (Hc = 35 mT) 
perform far more poorly, whereas the optimal performance for the 
transformation task is demonstrated when the reservoir substantially 
includes the conical phase that has strong nonlinearity and complexity. 

The MSE values displayed for Fig. 3e,g highlight that the performance 
from the identical reservoirs is starkly different between the two types 
of computational task.

The computational performance of our magnetic reservoirs can be 
related to their physical properties. Figure 4a–c displays the spectral 
evolution of different magnetic phases with field cycling. The high 
(low) transformation performance of the conical (helical) phase can 
be associated with the size of the frequency shift by the magnetic field. 
The dispersion curve of the helical phase displays a notably flat profile 
in comparison with the other magnetic phases in chiral magnets45, 
resulting in a poor computational performance with its peak posi-
tion shifting very weakly in response to the field input. Much higher 
amplitude frequency shifts are found in the highly performing conical 
and skyrmion phases, producing strong nonlinearity and complex-
ity in their reservoirs, and hence low MSE values in the transforma-
tion tasks—see further/detailed analysis in Supplementary Note 2 
and Supplementary Fig. 4. The origin of the excellent performance 
of the skyrmion reservoirs for forecasting tasks can be explained by 
comparing the spectra across the three phases at the same field values 
but at different points in the input field cycle, labelled as A–D in Fig. 4d.  
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of MSE for [0, 1], where 0 (1) represents the best (worst) MSE. A (meta)stable 
magnetic field range for each phase is colour-coded. i, MSE' and task-agnostic 
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The spectra of both the helical (Fig. 4e) and conical (Fig. 4g) phases are 
identical across points A–D, showing that these phases respond only 
to the current field input being applied and lack any memory response 
for magnetic field inputs. By contrast, the skyrmion spectra in Fig. 4f 
are dissimilar across points A–D, meaning that the spectral response 
depends not on only the field value but also past field inputs. This is 
the source of the crucial physical memory response for forecasting 
tasks, arising from the magnetic field-driven nucleation of metastable 
skyrmions and the annihilation of other magnetic phases40–43. More 
quantitative and detailed discussions are available in the next section 
and Supplementary Note 2.

Reservoir metrics
To gain further insights into our reservoir properties, we use 
task-agnostic reservoir metrics, that is nonlinearity (NL), memory 
capacity (MC) and complexity (CP)34,35, to characterize the reservoir 
properties (see Supplementary Note 4 for details) as well as correlation 
between these metrics and the normalized MSE for the forecasting 

(transformation) task (MSE′FC(TR)). We performed both forecasting and 
transformation tasks across a wide range of Hc values at 4 K, as shown 
in Fig. 4h. In parallel, the metric scores were evaluated for each Hc, as 
plotted in Fig. 4i. It is clear that the MC metric shows similar behaviour 
to the performance of MSE′FC  with Hc, i.e., forecasting performance  
and MC increases then decreases with Hc, suggesting that MC is a key 
property for a better performance in forecasting tasks. As discussed 
earlier, MC in the skyrmion phase stems from the history-dependent 
fading memory property generated by its gradual skyrmion nucleation 
with repeated field cycles40,41. Rich and complex spin-wave mode disper-
sion in the conical/ferrimagnetic phases provides the physical basis for 
the high NL and CP scores, offering a strong transformation task per-
formance (see more detailed discussions in Supplementary Note 2).

The correlation between different parameters can be numerically 
discussed using the standard Spearman’s rank correlation coefficient46 
as shown in Fig. 4j (Methods). Here, the algorithm outputs [−1, 1], where 
1 (−1) corresponds to perfect proportionality (inverse proportionality) 
and 0 denotes no correlation. Note that since the better performance 
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Fig. 5 | Above-room-temperature demonstration of task adaptability using 
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in each task is represented by a lower MSE′, the correlation with a nega-
tive value to each metric indicates a positive correlation in our analysis. 
The performance of time series forecasting strongly correlates with 
MC (−0.89) and CP (0.57), revealing that MC (CP) is favoured (disfa-
voured) for these particular types of task, while the opposite is true 
for transformation tasks. It is also important to highlight that MC and 
CP have a clear negative correlation (−0.68), indicating the trade-off 
nature between these two reservoir properties. Subsequently, the high 
correlation between NL and CP (0.67) suggests that a more nonlinear 
system enhances the amount of meaningful input data encoded in the 
reservoir to display high complexity.

We show the specific relationship between the reservoir perfor-
mance evaluated by MSE′ and MC (CP) as plotted in Fig. 4k (4l), where 
the colour of the dots indicates which magnetic phase the metrics 
were evaluated against. Following the Spearman’s rank correlation 
values for each pair, both plots show a negative trend for each reservoir 
characteristic. Unlike the conical phase, the metrics of the skyrmion 
phase appear to be clustered around high values of MC between 4 
and 7, further confirming that the skyrmion reservoir’s memory is 
responsible for the excellent forecasting performance. By contrast, 
Fig. 4l shows that the system’s ability to perform transformation tasks 
reaches its full potential by maximizing the complexity, which occurs 
when the conical phase dominates the magnet—see further discussions 
on the reservoir metrics and other correlations in Supplementary Fig. 7  
(Supplementary Note 5).

Above-room-temperature demonstration
Finally, we present that the task-adaptive reservoir concept can be 
transferable to different material systems, here using other chiral 
magnets: Co8.5Zn8.5Mn3 (Fig. 5) and FeGe (see Supplementary Note 7 
and Supplementary Fig. 9). Consistent with earlier work on the same 
class of Co-Zn-Mn alloy materials (for example, refs. 47,48), multiple 
magnetic phases in Co8.5Zn8.5Mn3 can be clearly recognized in the plot of 
alternating-current (a.c.) susceptibility measurements shown in Fig. 5a.  
In particular, in the vicinity of its Curie temperature, we can recognize 
the signature of a thermodynamically stable skyrmion phase—see also 
Supplementary Fig. 8 (Supplementary Note 6) for the imaginary part of 
the a.c. susceptibility to highlight this phase. We therefore performed 
reservoir computing schemes at 333 K with different magnetic cen-
tre fields Hc = 15 and 60 mT with a 10 mT cycling width. In Fig. 5b,c, 
we show the spectra of magnetic resonance during field cycling of 
both the nonlinear Mackey–Glass and sine input functions to carry 
out the future prediction and transformation tasks, respectively. For 
both tasks, we observe that the spectra depend strongly on the cen-
tre field, demonstrating the phase tunability of physical reservoirs in 
this material. Using these physical reservoirs with different magnetic 
phases, we carried out both tasks, the results of which are displayed in  
Fig. 5d–g. For the forecasting task (Fig. 5d,f), the skyrmion-dominated 
reservoir (Hc = 15 mT) outperforms the ferromagnetic reservoir 
(Hc = 60 mT) in terms of the MSE. By contrast, the ferromagnetic res-
ervoir can yield a better MSE than the skyrmion-dominated reservoir 
for the transformation task (Fig. 5e,g). See Supplementary Fig. 10 (Sup-
plementary Note 8) for the full phase tunability of Co8.5Zn8.5Mn3 and 
FeGe. Although there is clear space for improving the MSE as well as  
making full use of the task-adaptive nature of this material system, 
this above-room-temperature demonstration shows no fundamental 
limit to using the task-adaptive concept in a wide variety of materials.

Outlook
We have demonstrated the substantial benefits of introducing a 
phase-tunable approach, and hence task adaptability, to physical 
reservoir systems. A single physical reservoir may now be actively 
reconfigured on-demand for a strong performance across a broad 
range of tasks without the requirement for fabricating additional 
samples or using entirely different physical systems. This approach 

invites further development, such as online training and dynamic 
on-the-fly reservoir reconfiguration for incoming real-time datasets. 
Moreover, the phase-tunable approach demonstrated in our study 
can be transferable to a broad range of physical reservoirs, not only to 
magnetic materials that host chiral spin textures47,49,50 but also poten-
tially to non-magnetic systems that have rich thermodynamical phase 
diagrams. This approach may also offer additional functionality for 
wave-based physical recurrent neural networks32. Experimental dem-
onstration of on-demand reservoir reconfigurability brings physical 
reservoir computing closer to fully realizing its promise and helps to 
develop an alternative to software-based neural-network approaches 
powered by complementary metal–oxide–semiconductor technology 
software.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41563-023-01698-8.
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Methods
Details of experimental setup
Ferromagnetic resonance. For our experiments, a polished 
plate-shaped bulk Cu2OSeO3 crystal of dimensions 1.9, 1.4 and 0.3 mm 
(x, y and z, respectively) was placed on a coplanar waveguide with the 
(100) surface facing down. Here, the Cu2OSeO3 crystal was placed on 
a coplanar waveguide board, which sits on a copper cold finger of a 
closed-cycle helium cryostat. Here, we apply an external magnetic field 
H along the 〈100〉 crystallographic direction for the efficient generation 
of low-temperature skyrmions40,41. A VNA (ZNB40, Rohde & Schwarz) is 
employed to measure the spectral response of chiral magnetic crystals 
using ferromagnetic resonance (FMR) techniques. The microwave 
reflection coefficient S11 is recorded by the VNA as a function of the 
microwave frequency to characterize the spectral response for given 
magnetic fields and temperatures. For our measurements, we sweep 
the frequency, comprising 1,601 frequency points (M) at 0 dBm applied 
microwave power. Thus, a single raw spectral recording of S11 consists of 
1,601 points, associated with the frequency dependence of the dynamic 
magnetic susceptibility χm.

Field-cycling scheme. In standard field-cycling schemes without enve-
lope modulation, a single field loop N is completed when H is increased 
and decreased between fixed field points, for example, defined by Hlow 
(yellow), Hmid (red) and Hhigh (green) in Supplementary Fig. 1a, with dif-
ferent time steps of t as labelled. During the cycling process, the VNA 
records the corresponding spectrum for each magnetic field value to 
study the nucleation of metastable lattices such as low-temperature 
skyrmions40,41. This cycling scheme, however, lacks the ability to con-
struct a time-series input function for reservoir computing.

We have, therefore, established the mapped field-cycling 
scheme to apply the field-cycling data-input protocol for physical 
reservoir computing. This technique, as shown in Supplementary  
Fig. 1b, modulates each of Hlow, Hmid and Hhigh for different t to generate 
a field-cycling-dependent input function u′(N). This makes it possible 
to incorporate arbitrary time-series signals u(t) in our scheme. For the 
mapping procedure, u(t) is normalized between −1 and 1 and is offset 
by a central cycling field value Hc, where two additional copies (Hhigh 
and Hlow) are generated above and below Hmid using the cycling width 
Hrange. In this work, we accommodated two specific input sequences to 
suit different target applications: a chaotic oscillatory Mackey–Glass 
time-series signal44 (for forecasting) and a sine wave (for transfor-
mations). We construct the reservoir outputs using the FMR spectra 
measured at the lowest field point (yellow dots) within the cycles.

The mapped field-cycling scheme thus enables FMR frequency 
multiplexing. Frequency multiplexing is a technique commonly used 
to broadcast a single-dimensional input signal to multiple outputs. 
In our experiments, each field point is encoded as a series of frequen-
cies applied to the magnetic system. By measuring the FMR response, 
multiple output signals at different frequencies can be separated and 
analysed in the spectral space to be used for computation.

A typical time to solve tasks is, in total, around two hours. 
The breakdown of this entire process is: (1) input field mapping as 
pre-processing (less than one minute), (2) inputting data as a magnetic 
field and recording the physical reservoir output via the VNA (two 
hours) and (3) training/testing the reservoirs (less than one minute). 
For the reservoir construction process, we use the VNA to acquire the 
frequency spectra, which take approximately one second for each 
spectrum. Changing the magnetic field dominates the measurement 
time, and the timescale is limited by this speed. All processing in this 
work, including reservoir computing, is conducted by a CPU (Ryzen 
9 5900X, AMD).

Details of reservoir computing protocols
Data processing. After completing a set of mapped field-cycling meas-
urements, the spectral data are pre-processed before being added 

to the reservoir matrix R, as shown by the example in Supplemen-
tary Fig. 2a. Each spectrum undergoes the same processing method 
of a high-field (300 mT) background subtraction, a numerical loss-
less smoothing accommodated by the Savitzky–Golay filter51 and 
spectrum sampling at fixed intervals to obtain ΔS11. Data sampling is 
necessary to avoid an overfitting problem caused by too many data 
points during training (see Supplementary Note 2 and Supplemen-
tary Fig. 5 for more details). The sampling interval is determined 
by an automated search process that best produces the MSE of the  
test data.

Target generation. The transformation targets shown in the main 
text have been generated using the scipy.signal package52, where the 
input array is defined by 0.2π{1…N} for the ‘square’ waveform with a 
duty cycle of 0.5 and a ‘saw’ signal with a width of the rising ramp as 1. 
Note that the square target waveform has a very slight slope between 
the high and low values due to the finite sample rate.

For the forecasting tasks, Mackey–Glass, a chaotic time series 
derived from a nonlinear time-delayed differential equation, was 
employed. Its complex behaviour is commonly used as a benchmark 
for testing the performance of prediction algorithms. The signal is 

defined by: dx
dt
= β xd

1+xn
d
− dx , where x and xd represent the value of the 

signal at time t and t-d, respectively. We have numerically generated 
the signal to exhibit a chaotic oscillatory behaviour with the following 
parameters: β = 0.2, n = 10, and d = 17.

Training and testing. For training and testing, R is subsequently sepa-
rated into training and test datasets determined by a test-length factor 
k, in the ranges of [0, 1], as illustrated in Supplementary Fig. 2b. The 
training dataset is passed on to a variant of the linear regression algo-
rithm, that is, ridge regression53, to calculate the optimal weights to 
reproduce the target dataset. Ridge regression is a common regression 
technique with a regularization term α for analysing multicollinear 
data. The weights are determined via min(w)) || χw − y ||22 + α ||w ||22, where 
w, χ and y denote the ridge coefficients (weights), reservoir elements 
and the target value terms, respectively. Here, α helps to penalize large 
w values obtained during the fitting process to stabilize the model and 
prevent overfitting. We have used the scikit-learn package for this 
calculation54. The obtained weights are then applied to the unseen test 
dataset to evaluate the training performance and compared with the 
test target data.

In this study, k was fixed at 0.3, that is, using 70% of data for train-
ing and 30% for testing with N = 1,000 cycles. The dependence of k 
on the MSE values for the forecasting (transformation) task is shown 
in Supplementary Fig. 2c (2d). As observed in these plots, sufficient 
training data are necessary to improve the MSE for each case; in other 
words, k should be reasonably smaller than unity. We confirm that the 
choice of k does not substantially alter our analysis and conclusions 
drawn in this study.

Performance evaluation of reservoir computing. The MSE is a statisti-
cal measure that quantifies the difference between the predicted and 
true values by averaging the squared differences across data points. A 
lower MSE value indicates a better predictive performance for a given 
task. We calculate our MSE values using the mean_squared_error  
function of the sklearn.metrics package54, which evaluates: 
MSE( y, ̂y) = 1

nsamples
∑nsamples−1

i=0 ( yi − ̂yi)
2 , where yi and ŷi correspond to the 

target (true signal) and transformed/predicted values, respectively, 
and each consists of nsamples number of data points. Here yi and ŷi is the 
i-th sample of y and ŷ.

Correlation analysis
We determine the correlations for the MSE metric and the task-agnostic 
metrics using Spearman’s rank correlation coefficient46, which is a 
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non-parametric measure (that is, it does not assume that the data  
follows a specific statistical distribution such as the normal distribu-
tion) of the strength and direction of association between two vari-
ables. It reflects the degree to which their rankings correlate, yielding 
values ranging from −1 to 1. The value of −1 indicates a perfect negative 
association (that is, where one variable increases, the other decreases). 
Conversely, the value of 1 implies a perfect positive association (where 
one variable increases, the other decreases).

Here we present correlation plots which we do not show in the 
main text. For this analysis, we normalize the MSE values as follows:

MSE′ =
log10(MSE) −min(log10(MSE))

max(log10(MSE)) −min(log10(MSE)) . (1)

Note that a log value of MSE was taken to minimize the correlation 
anomalies arising from a large range of MSE values, resulting in an 
incorrect representation of the dataset. This is equivalent to plotting 
the MSE values on a logarithmic scale.

Data availability
The data presented in the main text and the Supplementary Informa-
tion are available from the corresponding authors upon reasonable 
request.

Code availability
The code used in this study is available from the corresponding author 
upon reasonable request.

References
51. Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by 

simplified least squares procedures. Anal. Chem. 36, 1627–1639 
(1964).

52. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific 
computing in Python. Nat. Methods 17, 261–272 (2020).

53. Hilt, D. E. & Seegrist, D. W. Ridge: A Computer Program for 
Calculating Ridge Regression Estimates Research Note NE-236 (US 
Department of Agriculture, 1977); https://www.biodiversitylibrary.
org/item/137258

54. Pedregosa, F. et al. Scikit-learn: machine learning in Python.  
J. Mach. Learn. Res. 12, 2825–2830 (2011).

Acknowledgements
O.L. and H.K. thank the Leverhulme Trust for financial support via 
RPG-2016-391. K.S. was supported by The Eric and Wendy Schmidt 
Fellowship Program and the Engineering and Physical Sciences 

Research Council (grant no. EP/W524335/1). W.R.B. and J.C.G. were 
supported by the Leverhulme Trust (RPG-2017-257) and the Imperial 
College London President’s Excellence Fund for Frontier Research. 
J.C.G., W.R.B. and H.K. were supported by EPSRC grant EP/X015661/1. 
J.C.G. was supported by the Royal Academy of Engineering under the 
Research Fellowship programme. This work was partly supported 
by Grants-In-Aid for Scientific Research (18H03685, 20H00349, 
21K18595, 21H04990, 21H04440 and 22H04965) from JSPS, PRESTO 
(JPMJPR18L5) and CREST (JPMJCR1874 and JPMJCR20T1) from JST, 
Katsu Research Encouragement Award and UTEC-UTokyo FSI Research 
Grant Program of the University of Tokyo, Asahi Glass Foundation. This 
work has also been funded by the Deutsche Forschungsgemeinschaft 
(DFG; German Research Foundation) under SPP2137 Skyrmionics, 
TRR80 (From Electronic Correlations to Functionality, Project  
No. 107745057, Project G9) and the excellence cluster MCQST under 
Germany’s Excellence Strategy EXC-2111 (Project No. 390814868).  
We thank A. Mehonic, P. Zubko and A. Lombardo for reading an earlier 
version of manuscript and the provided comments.

Author contributions
O.L., K.D.S., J.C.G. and H.K. designed the experiments. O.L., T.W. and 
D.P. performed the measurements. O.L., T.W., K.D.S., J.C.G., W.R.B. and 
H.K. analysed the results with help from the rest of the co-authors. 
S.S., A.A., K.K., N.K., Y. Taguchi, C.B. and Y. Tokura grew the chiral 
magnetic crystals and their characterized magnetic properties.  
H.K. proposed and supervised the studies. O.L., J.C.G. and H.K. wrote 
the paper with inputs from the rest of the co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41563-023-01698-8.

Correspondence and requests for materials should be addressed to 
Oscar Lee or Hidekazu Kurebayashi.

Peer review information Nature Materials thanks Johan Åkerman and 
the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturematerials
https://www.biodiversitylibrary.org/item/137258
https://www.biodiversitylibrary.org/item/137258
https://doi.org/10.1038/s41563-023-01698-8
http://www.nature.com/reprints

	Task-adaptive physical reservoir computing
	Reservoir computing scheme
	Phase-tunable physical reservoir computing
	Reservoir performance
	Reservoir metrics
	Above-room-temperature demonstration
	Outlook
	Online content
	Fig. 1 Working principles of physical reservoir computing with a chiral magnet.
	Fig. 2 Field-cycling-dependent spin-wave spectra as a physical reservoir.
	Fig. 3 Reservoir computing performance of different magnetic phase spaces.
	Fig. 4 Computation properties associated with physical characteristics.
	Fig. 5 Above-room-temperature demonstration of task adaptability using Co8.




