Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing

A Publisher Correction to this article was published on 12 October 2023

This article has been updated


Recently, the increasing demand for data-centric applications is driving the elimination of image sensing, memory and computing unit interface, thus promising for latency- and energy-strict applications. Although dedicated electronic hardware has inspired the development of in-memory computing and in-sensor computing, folding the entire signal chain into one device remains challenging. Here an in-memory sensing and computing architecture is demonstrated using ferroelectric-defined reconfigurable two-dimensional photodiode arrays. High-level cognitive computing is realized based on the multiplications of light power and photoresponsivity through the photocurrent generation process and Kirchhoff’s law. The weight is stored and programmed locally by the ferroelectric domains, enabling 51 (>5 bit) distinguishable weight states with linear, symmetric and reversible manipulation characteristics. Image recognition can be performed without any external memory and computing units. The three-in-one paradigm, integrating high-level computing, weight memorization and high-performance sensing, paves the way for a computing architecture with low energy consumption, low latency and reduced hardware overhead.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different sensory computing architectures and schematic of proposed IMSC architectures.
Fig. 2: Ferroelectric-defined reconfigurable 2D homojunctions.
Fig. 3: Optoelectronic properties of the weight-reconfigurable 2D homojunctions.
Fig. 4: Ferroelectric-defined weight-reconfigurable sensor array.
Fig. 5: Hardware implementation of image recognition using the ferroelectric-defined weight-reconfigurable sensor array.

Data availability

Source data are available via Figshare at The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code that supports the plots in this paper is available via GitHub at

Change history


  1. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article  Google Scholar 

  2. Zhou, F. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article  CAS  Google Scholar 

  3. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  CAS  Google Scholar 

  4. Wang, C. Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  Google Scholar 

  5. Dodda, A., Trainor, N., Redwing, J. M. & Das, S. All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).

    Article  CAS  Google Scholar 

  6. Rehman, S., Khan, M. F., Kim, H. D. & Kim, S. Analog-digital hybrid computing with SnS2 memtransistor for low-powered sensor fusion. Nat. Commun. 13, 2804 (2022).

    Article  CAS  Google Scholar 

  7. Chai, Y. In-sensor computing for machine vision. Nature 579, 32–33 (2020).

    Article  CAS  Google Scholar 

  8. Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).

  9. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    Article  CAS  Google Scholar 

  10. Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).

    Article  CAS  Google Scholar 

  11. Kiani, F., Yin, J., Wang, Z., Yang, J. J. & Xia, Q. A fully hardware-based memristive multilayer neural network. Sci. Adv. 7, eabj4801 (2021).

    Article  Google Scholar 

  12. Choi, C. et al. Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron. 5, 386–393 (2022).

    Article  Google Scholar 

  13. Lee, S., Peng, R., Wu, C. & Li, M. Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat. Commun. 13, 1485 (2022).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article  Google Scholar 

  15. Jang, H. et al. An atomically thin optoelectronic machine vision processor. Adv. Mater. 32, e2002431 (2020).

    Article  Google Scholar 

  16. Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

    Article  Google Scholar 

  17. Zhu, Q. B. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021).

    Article  CAS  Google Scholar 

  18. Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2021).

    Article  Google Scholar 

  19. Lao, J. et al. Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. 9, 2106092 (2022).

    Article  Google Scholar 

  20. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  Google Scholar 

  21. Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).

    Article  Google Scholar 

  22. Choi, C. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).

    Article  CAS  Google Scholar 

  23. Yu, J. et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021).

    Article  CAS  Google Scholar 

  24. Park, H. L. et al. Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 32, e1906899 (2020).

    Article  Google Scholar 

  25. Wang, H. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30, e1803961 (2018).

    Article  Google Scholar 

  26. Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

    Article  CAS  Google Scholar 

  27. Feng, G. et al. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Adv. Funct. Mater. 31, 2104327 (2021).

    Article  CAS  Google Scholar 

  28. Cui, B. et al. Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision. Nat. Commun. 13, 1707 (2022).

    Article  CAS  Google Scholar 

  29. Yu, R. et al. Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification. Nat. Commun. 13, 7019 (2022).

    Article  Google Scholar 

  30. Pi, L. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 5, 248–254 (2022).

    Article  CAS  Google Scholar 

  31. Wu, G. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3, 43–50 (2020).

    Article  CAS  Google Scholar 

  32. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  33. Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article  CAS  Google Scholar 

  34. Xie, D. et al. Porous metal-organic framework/ReS2 heterojunction phototransistor for polarization-sensitive visual adaptation emulation. Adv. Mater. 35, e2212118 (2023).

  35. Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    Article  CAS  Google Scholar 

  36. Wu, G. et al. Hybrid MoS2/PbS quantum dots toward in-sensor reservoir computing. IEEE Electron Device Lett. 44, 857–860 (2023).

    Article  CAS  Google Scholar 

  37. Tong, L. et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

    Article  CAS  Google Scholar 

  38. Bie, Y. Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017).

    Article  CAS  Google Scholar 

  39. Wu, G. et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 32, e1907937 (2020).

    Article  Google Scholar 

  40. Tian, B. B. et al. Tunnel electroresistance through organic ferroelectrics. Nat. Commun. 7, 11502 (2016).

    Article  CAS  Google Scholar 

  41. Chen, P., Peng, X. & Yu, S. 2017 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2017).

  42. Chen, P., Peng, X. & Yu, S. NeuroSim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 37, 3067–3080 (2018).

    Article  Google Scholar 

  43. Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).

    Article  CAS  Google Scholar 

  44. Liu, G. et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022).

    Article  CAS  Google Scholar 

  45. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Article  CAS  Google Scholar 

  46. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article  Google Scholar 

Download references


This work is supported by the National Key Research and Development Program of China (grant no. 2021YFA1200700), National Natural Science Foundation of China (grant nos. T2222025, 62025405, 61825404, 61835012, 62104043, 62104044 and 62174053), the China National Postdoctoral Program for Innovative Talents (grant no. BX2021069), the China Postdoctoral Science Foundation (grant no. 2021M690649), Shanghai Science and Technology Innovation Action Plan (grant nos. 19JC141670, 21JC1402000 and 21520714100) and Open Research Projects of Zhejiang Lab (2021MD0AB03).

Author information

Authors and Affiliations



G.W., X. Zhang, Q.L., B.T. and Jianlu Wang conceived the concept. Q.L, B.T. and Jianlu Wang supervised the research. G.W. and J.Z. fabricated the devices. Jingli Wang and M.Z. transferred the array Au electrode. G.W. and G.F. performed the electrical and optoelectronic measurements. X. Zhang, F.Z., C.Y. and K.Z. performed the edge detection and classification tasks. X. Zhang and D.D. designed the test program for the LTD and LTP processes. G.W., G.F., X. Zhao, D.G. and B.T. performed the chip–robot dog interaction video demo. C.D., J.C. and M.L. advised on the experiments and data analysis. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Bobo Tian, Qi Liu or Jianlu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Yang Chai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23.

Supplementary Video 1

The robot dog movement navigated by the IMSC chip.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Zhang, X., Feng, G. et al. Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing