Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-valley Rashba monolayer laser

Abstract

Direct-bandgap transition metal dichalcogenide monolayers are appealing candidates to construct atomic-scale spin-optical light sources owing to their valley-contrasting optical selection rules. Here we report on a spin-optical monolayer laser by incorporating a WS2 monolayer into a heterostructure microcavity supporting high-Q photonic spin-valley resonances. Inspired by the creation of valley pseudo-spins in monolayers, the spin-valley modes are generated from a photonic Rashba-type spin splitting of a bound state in the continuum, which gives rise to opposite spin-polarized ±K valleys due to emergent photonic spin–orbit interaction under inversion symmetry breaking. The Rashba monolayer laser shows intrinsic spin polarizations, high spatial and temporal coherence, and inherent symmetry-enabled robustness features, enabling valley coherence in the WS2 monolayer upon arbitrary pump polarizations at room temperature. Our monolayer-integrated spin-valley microcavities open avenues for further classical and non-classical coherent spin-optical light sources exploring both electron and photon spins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of a spin-valley Rashba monolayer laser.
Fig. 2: Principle of spin-valley generation via a photonic Rashba effect.
Fig. 3: Spin-valley (‘cold’) optical microcavity.
Fig. 4: Characteristics of spin-valley Rashba monolayer lasing.
Fig. 5: Verification of room-temperature Rashba monolayer lasing.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its supplementary information. Extra data are available from the corresponding author upon reasonable request.

References

  1. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    Article  CAS  Google Scholar 

  2. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  CAS  Google Scholar 

  3. Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015).

    Article  CAS  Google Scholar 

  4. Liu, Y. et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 5, eaav4506 (2019).

    Article  CAS  Google Scholar 

  5. Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).

    Article  CAS  Google Scholar 

  6. Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    Article  CAS  Google Scholar 

  7. Sederberg, S. et al. Vectorized optoelectronic control and metrology in a semiconductor. Nat. Photonics 14, 680–685 (2020).

    Article  CAS  Google Scholar 

  8. Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  9. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    Article  CAS  Google Scholar 

  10. Dahan, N., Gorodetski, Y., Frischwasser, K., Kleiner, V. & Hasman, E. Geometric Doppler effect: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).

    Article  Google Scholar 

  11. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  Google Scholar 

  12. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Article  Google Scholar 

  13. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  14. Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C. & Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443–447 (2018).

    Article  CAS  Google Scholar 

  15. Sun, L. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 13, 180–184 (2019).

    Article  CAS  Google Scholar 

  16. Rong, K. et al. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. Nat. Nanotechnol. 15, 927–933 (2020).

    Article  CAS  Google Scholar 

  17. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article  CAS  Google Scholar 

  18. Ge, X., Minkov, M., Fan, S., Li, X. & Zhou, W. Laterally confined photonic crystal surface emitting laser incorporating monolayer tungsten disulfide. npj 2D Mater. Appl. 3, 16 (2019).

    Article  Google Scholar 

  19. Neumann, J. V. & Wigner, E. Uber merkwürdige diskrete Eigenwerte. Phys. Zeitschr. 30, 465–467 (1929).

    Google Scholar 

  20. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    Article  Google Scholar 

  21. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  Google Scholar 

  22. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article  Google Scholar 

  23. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article  Google Scholar 

  24. Liu, W. et al. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett. 123, 116104 (2019).

    Article  CAS  Google Scholar 

  25. Yin, X., Jin, J., Soljačić, M., Peng, C. & Zhen, B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020).

    Article  CAS  Google Scholar 

  26. Cohen, A. et al. Growth-etch metal-organic chemical vapor deposition approach of WS2 atomic layers. ACS Nano 15, 526–538 (2021).

    Article  CAS  Google Scholar 

  27. Schweika, W., Valldor, M. & Lemmens, P. Approaching the ground state of the Kagomé antiferromagnet. Phys. Rev. Lett. 98, 067201 (2007).

    Article  CAS  Google Scholar 

  28. Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    Article  Google Scholar 

  29. Chen, X.-D., Zhao, F.-L., Chen, M. & Dong, J.-W. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Phys. Rev. B 96, 020202 (2017).

    Article  Google Scholar 

  30. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  31. Lohof, F. et al. Prospects and limitations of transition metal dichalcogenide laser gain materials. Nano Lett. 19, 210–217 (2019).

    Article  CAS  Google Scholar 

  32. Siegman, A. E. Lasers (University Science Books, 1986).

  33. Martin-Regalado, J., Prati, F., San Miguel, M. & Abraham, N. B. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 765–783 (1997).

    Article  CAS  Google Scholar 

  34. Nixon, M., Ronen, E., Friesem, A. A. & Davidson, N. Observing geometric frustration with thousands of coupled lasers. Phys. Rev. Lett. 110, 184102 (2013).

    Article  Google Scholar 

  35. Noguchi, R. et al. Direct mapping of spin and orbital entangled wave functions under interband spin-orbit coupling of giant Rashba spin-split surface states. Phys. Rev. B 95, 041111 (2017).

    Article  Google Scholar 

  36. Tokman, M., Wang, Y. & Belyanin, A. Valley entanglement of excitons in monolayers of transition-metal dichalcogenides. Phys. Rev. B 92, 075409 (2015).

    Article  Google Scholar 

  37. Jha, P. K., Shitrit, N., Ren, X., Wang, Y. & Zhang, X. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface. Phys. Rev. Lett. 121, 116102 (2018).

    Article  CAS  Google Scholar 

  38. Jung, G.-H., Yoo, S. & Park, Q.-H. Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions. Nanophotonics 8, 263–270 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

K.R., X.D., D.R., C.-L.L., V.G., V.K. and E.H. gratefully acknowledge financial support from the Israel Science Foundation (ISF, grant number 1170/20) and the Helen Diller foundation. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit (MNF&PU), Technion. B.W. is sponsored by Shanghai Pujiang Program. A.P., P.K.M., A.C. and A.I. acknowledge the generous support from the ISF (grant numbers 2596/21 and 2171/17).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this work.

Corresponding author

Correspondence to Erez Hasman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Alex Krasnok and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–12, Figs 1–22 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, K., Duan, X., Wang, B. et al. Spin-valley Rashba monolayer laser. Nat. Mater. 22, 1085–1093 (2023). https://doi.org/10.1038/s41563-023-01603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01603-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing