Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct growth of single-chiral-angle tungsten disulfide nanotubes using gold nanoparticle catalysts

Abstract

Transition metal dichalcogenide (TMD) nanotubes offer a unique platform to explore the properties of TMD materials at the one-dimensional limit. Despite considerable efforts thus far, the direct growth of TMD nanotubes with controllable chirality remains challenging. Here we demonstrate the direct and facile growth of high-quality WS2 and WSe2 nanotubes on Si substrates using catalytic chemical vapour deposition with Au nanoparticles. The Au nanoparticles provide unique accommodation sites for the nucleation of WS2 or WSe2 shells on their surfaces and seed the subsequent growth of nanotubes. We find that the growth mode of nanotubes is sensitive to the temperature. With careful temperature control, we realize ~79% WS2 nanotubes with single chiral angles, with a preference of 30° (~37%) and 0° (~12%). Moreover, we demonstrate how the geometric, electronic and optical properties of the synthesized WS2 nanotubes can be modulated by the chirality. We anticipate that this approach using Au nanoparticles as catalysts will facilitate the growth of TMD nanotubes with controllable chirality and promote the study of their interesting properties and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct CVD growth of TMD NTs using Au NPs as catalysts.
Fig. 2: Structural characterizations of WS2 NTs grown at different growth temperatures.
Fig. 3: Growth mechanism and dynamics of WS2 NTs catalysed by Au NPs.
Fig. 4: Correlation of the structural parameters, helicity and faceting of the WS2 NTs.
Fig. 5: Optical and electronic characterizations of WS2 multi-walled NTs.

Similar content being viewed by others

Data availability

The data generated and/or analysed during the current study are available from the corresponding authors upon reasonable request. Correspondence and requests for materials should be addressed to Q.A. or S.Y. Source data are provided with this paper.

References

  1. Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020).

    ADS  CAS  PubMed  Google Scholar 

  2. Musfeldt, J. L., Iwasa, Y. & Tenne, R. Nanotubes from layered transition metal dichalcogenides. Phys. Today 73, 42–48 (2020).

    CAS  Google Scholar 

  3. Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992).

    ADS  CAS  Google Scholar 

  4. Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    ADS  CAS  PubMed  Google Scholar 

  5. Qin, F. et al. Superconductivity in a chiral nanotube. Nat. Commun. 8, 14465 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldbart, O. et al. Diameter-dependent wetting of tungsten disulfide nanotubes. Proc. Natl Acad. Sci. USA 113, 13624–13629 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaplan-Ashiri, I. et al. On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Natl Acad. Sci. USA 103, 523–528 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Staiger, M. et al. Excitonic resonances in WS2 nanotubes. Phys. Rev. B 86, 165423 (2012).

    ADS  Google Scholar 

  9. Levi, R., Bitton, O., Leitus, G., Tenne, R. & Joselevich, E. Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett. 13, 3736–3741 (2013).

    ADS  CAS  PubMed  Google Scholar 

  10. Xia, H. et al. Probing the chiral domains and excitonic states in individual WS2 tubes by second-harmonic generation. Nano Lett. 21, 4937–4943 (2021).

    ADS  CAS  PubMed  Google Scholar 

  11. Zak, A. et al. Scaling up of the WS2 nanotubes synthesis. Fuller. Nanotub. Carbon Nanostruct. 19, 18–26 (2010).

    ADS  Google Scholar 

  12. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

    ADS  CAS  PubMed  Google Scholar 

  13. Kim, H. et al. Seed growth of tungsten diselenide nanotubes from tungsten oxides. Small 11, 2192–2199 (2015).

    CAS  PubMed  Google Scholar 

  14. Liu, Z. et al. WS2 nanotubes, 2D nanomeshes, and 2D in-plane films through one single chemical vapor deposition route. ACS Nano 13, 3896–3909 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chithaiah, P. et al. Solving the “MoS2 nanotubes” synthetic enigma and elucidating the route for their catalyst-free and scalable production. ACS Nano 14, 3004–3016 (2020).

    CAS  PubMed  Google Scholar 

  16. Qin, F. et al. Diameter-dependent superconductivity in individual WS2 nanotubes. Nano Lett. 18, 6789–6794 (2018).

    ADS  CAS  PubMed  Google Scholar 

  17. Sinha, S. S. et al. Size-dependent control of exciton–polariton interactions in WS2 nanotubes. Small 16, e1904390 (2020).

    PubMed  Google Scholar 

  18. Wang, X. H., Zheng, C. C. & Ning, J. Q. Influence of curvature strain and van der Waals force on the inter-layer vibration mode of WS2 nanotubes: a confocal micro-Raman spectroscopic study. Sci. Rep. 6, 33091 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, S. Y., Kwak, J., Ciobanu, C. V. & Kwon, S. Y. Recent developments in controlled vapor-phase growth of 2D group 6 transition metal dichalcogenides. Adv. Mater. 31, e1804939 (2019).

    PubMed  Google Scholar 

  20. Li, H., Li, Y., Aljarb, A., Shi, Y. & Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118, 6134–6150 (2018).

    CAS  PubMed  Google Scholar 

  21. Deniz, H. & Qin, L.-C. Determination of the chiral indices of tungsten disulfide (WS2) nanotubes by electron diffraction. Chem. Phys. Lett. 552, 92–96 (2012).

    ADS  CAS  Google Scholar 

  22. Chen, Y., Deniz, H. & Qin, L. C. Accurate measurement of the chirality of WS2 nanotubes. Nanoscale 9, 7124–7134 (2017).

    CAS  PubMed  Google Scholar 

  23. Remškar, M., Škraba, Z., Ballif, C., Sanjinés, R. & Lévy, F. Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study. Surf. Sci. 433–435, 637–641 (1999).

    ADS  Google Scholar 

  24. Houben, L. et al. Diffraction from disordered stacking sequences in MoS2 and WS2 fullerenes and nanotubes. J. Phys. Chem. C 116, 24350–24357 (2012).

    CAS  Google Scholar 

  25. Magnin, Y., Amara, H., Ducastelle, F., Loiseau, A. & Bichara, C. Entropy-driven stability of chiral single-walled carbon nanotubes. Science 362, 212–215 (2018).

    ADS  CAS  PubMed  Google Scholar 

  26. Xu, Z., Bai, X., Wang, Z. L. & Wang, E. Multiwall carbon nanotubes made of monochirality graphite shells. J. Am. Chem. Soc. 128, 1052–1053 (2006).

    CAS  PubMed  Google Scholar 

  27. Guo, W. & Guo, Y. Energy optimum chiralities of multiwalled carbon nanotubes. J. Am. Chem. Soc. 129, 2730–2731 (2007).

    CAS  PubMed  Google Scholar 

  28. Jany, B. R. et al. Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface. Sci. Rep. 7, 42420 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeon, S. et al. Reversible disorder-order transitions in atomic crystal nucleation. Science 371, 498–503 (2021).

    ADS  CAS  PubMed  Google Scholar 

  30. Zhao, B. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 140, 14217–14223 (2018).

    CAS  PubMed  Google Scholar 

  31. Li, B. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 20, 818–825 (2021).

    ADS  CAS  PubMed  Google Scholar 

  32. Cui, X. et al. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 9, 1301 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    ADS  CAS  PubMed  Google Scholar 

  34. DiStefano, J. G. et al. Nanoparticle@MoS2 core–shell architecture: role of the core material. Chem. Mater. 30, 4675–4682 (2018).

    CAS  Google Scholar 

  35. Lavie, A. et al. Synthesis of core–shell single-layer MoS2 sheathing gold nanoparticles, AuNP@1L-MoS2. Nanotechnology 28, 24LT03 (2017).

    PubMed  Google Scholar 

  36. Leven, I., Guerra, R., Vanossi, A., Tosatti, E. & Hod, O. Multiwalled nanotube faceting unravelled. Nat. Nanotechnol. 11, 1082–1086 (2016).

    ADS  CAS  PubMed  Google Scholar 

  37. Guerra, R., Leven, I., Vanossi, A., Hod, O. & Tosatti, E. Smallest Archimedean Screw: facet dynamics and friction in multiwalled nanotubes. Nano Lett. 17, 5321–5328 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Golberg, D., Mitome, M., Bando, Y., Tang, C. C. & Zhi, C. Y. Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Appl. Phys. A 88, 347–352 (2007).

    ADS  CAS  Google Scholar 

  39. Palser, A. H. R. Interlayer interactions in graphite and carbon nanotubes. Phys. Chem. Chem. Phys. 1, 4459–4464 (1999).

    CAS  Google Scholar 

  40. Bandura, A. V., Lukyanov, S. I., Kuruch, D. D. & Evarestov, R. A. Multi-walled MoS2 nanotubes. First principles and molecular mechanics computer simulation. Phys. E 124, 114183 (2020).

    CAS  Google Scholar 

  41. Srolovitz, D. J., Safran, S. A., Homyonfer, M. & Tenne, R. Morphology of nested fullerenes. Phys. Rev. Lett. 74, 1779–1782 (1995).

    ADS  CAS  PubMed  Google Scholar 

  42. Garel, J. et al. Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett. 12, 6347–6352 (2012).

    ADS  CAS  PubMed  Google Scholar 

  43. Kolmogorov, A. N. & Crespi, V. H. Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett. 85, 4727–4730 (2000).

    ADS  CAS  PubMed  Google Scholar 

  44. Gordeev, G., Wasserroth, S., Li, H., Flavel, B. & Reich, S. Moire-induced vibrational coupling in double-walled carbon nanotubes. Nano Lett. 21, 6732–6739 (2021).

    ADS  CAS  PubMed  Google Scholar 

  45. Yadgarov, L. et al. Strong light–matter interaction in tungsten disulfide nanotubes. Phys. Chem. Chem. Phys. 20, 20812–20820 (2018).

    CAS  PubMed  Google Scholar 

  46. Zeng, Z. et al. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers. Adv. Funct. Mater. 29, 1806874 (2019).

    Google Scholar 

  47. Zheng, S. et al. Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater. 3, 1600–1605 (2015).

    CAS  Google Scholar 

  48. Seifert, G., Terrones, H., Terrones, M., Jungnickel, G. & Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146–149 (2000).

    ADS  CAS  PubMed  Google Scholar 

  49. Frey, G. L., Elani, S., Homyonfer, M., Feldman, Y. & Tenne, R. Optical-absorption spectra of inorganic fullerenelike MS2 (M = Mo, W). Phys. Rev. B 57, 6666–6671 (1998).

    ADS  CAS  Google Scholar 

  50. Zibouche, N., Kuc, A. & Heine, T. From layers to nanotubes: transition metal disulfides TMS2. Eur. Phys. J. B 85, 49 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

Q.A. thanks the National Science Foundation of China (5110200554) and Fundamental Research Funds for the Central Universities (G2019KY05112, G2020KY05304) for financial support. S.Y. thanks the National Science Foundation of China for financial support (11974263, 12174291) and the Knowledge Innovation Program of Wuhan Science and Technology Bureau (no. 2022013301015171). Q.A. thanks the Analytical & Testing Center of Northwestern Polytechnical University for SEM, TEM and STEM measurements and for help with the FET device fabrication and optical data collection. Q.A. thanks G. Sha and M. Feng from Nanjing University of Science and Technology for assistance in performing atom probe tomography analysis of the nanotubes.

Author information

Authors and Affiliations

Authors

Contributions

Q.A. conceived the original idea for the project. Q.A. developed the catalytic CVD method to prepare WS2 and WSe2 NTs and analysed the growth mechanisms. Q.A. performed the SEM, TEM and STEM characterizations and analysed all the experimental data. Q.A. carried out the Raman and PL characterizations and performed the FET device fabrications. W.X., P.L. and S.Y. performed first-principles calculations and provided theoretical support. Q.A. and S.H. carried out the electrical characterizations. Q.A. and S.Y. wrote the paper. F.H. and Y.Y. discussed the results and provided suggestions during the process of draughting. Q.A., S.Y., Y.Y. and F.H. revised the manuscript. X.H. made some suggestions during the FET device fabrication. All authors commented on the manuscript.

Corresponding authors

Correspondence to Qinwei An or Shengjun Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jeremy Sloan, Zheng Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–62, Tables 1–5 and Discussion.

Source data

Source Data Fig. 4

Experimental data.

Source Data Fig. 5

Experimental data and simulated results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Q., Xiong, W., Hu, F. et al. Direct growth of single-chiral-angle tungsten disulfide nanotubes using gold nanoparticle catalysts. Nat. Mater. 23, 347–355 (2024). https://doi.org/10.1038/s41563-023-01590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01590-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing