Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6

Abstract

Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag8SnSe6 using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed ‘liquid-like thermal conduction’ picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity (<0.5 W m−1 K−1) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures and phase transition in Ag8SnSe6.
Fig. 2: Lattice and diffusive dynamics across the superionic transition.
Fig. 3: Phonon dispersions and coupled vibrations of the Ag and free Se atoms.
Fig. 4: Dramatic phonon broadening without energy softening at low temperature.

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The input files including structure and neural network potential files used for calculating the thermal conductivity using LAMMPS are provided with this paper. The codes that support other findings of the study are available from the corresponding authors on request.

References

  1. Zhang, Z. & Nazar, L. F. Exploiting the paddle-wheel mechanism for the design of fast ion conductors. Nat. Rev. Mater. 7, 389–405 (2022).

    Google Scholar 

  2. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    CAS  Google Scholar 

  3. Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).

    Google Scholar 

  4. Lin, S. et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule 1, 816–830 (2017).

    CAS  Google Scholar 

  5. Zhao, K. et al. Recent advances in liquid‐like thermoelectric materials. Adv. Funct. Mater. 30, 1903867 (2019).

    Google Scholar 

  6. Li, W. et al. Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Adv. Energy Mater. 8, 1800030 (2018).

    Google Scholar 

  7. Niedziela, J. L. et al. Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2. Nat. Phys. 15, 73–78 (2019).

    CAS  Google Scholar 

  8. Voneshen, D. J. et al. Hopping time scales and the phonon-liquid electron-crystal picture in thermoelectric copper selenide. Phys. Rev. Lett. 118, 145901 (2017).

    CAS  Google Scholar 

  9. Ding, J. et al. Anharmonic lattice dynamics and superionic transition in AgCrSe2. Proc. Natl Acad. Sci. USA 117, 3930–3937 (2020).

    CAS  Google Scholar 

  10. Qiu, W. et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proc. Natl Acad. Sci. USA 111, 15031–15035 (2014).

    CAS  Google Scholar 

  11. Li, L. et al. High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. J. Mater. Chem. C 4, 5806–5813 (2016).

    CAS  Google Scholar 

  12. Li, B. et al. Liquid-like thermal conduction in intercalated layered crystalline solids. Nat. Mater. 17, 226–230 (2018).

    CAS  Google Scholar 

  13. Trachenko, K. Heat capacity of liquids: an approach from the solid phase. Phys. Rev. B 78, 104201 (2008).

    Google Scholar 

  14. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Google Scholar 

  15. Famprikis, T. et al. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    CAS  Google Scholar 

  16. Zhang, B. et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 10, 139–159 (2018).

    Google Scholar 

  17. Wang, C. et al. Ion hopping: design principles for strategies to improve ionic conductivity for inorganic solid electrolytes. Small 18, 2107064 (2022).

    CAS  Google Scholar 

  18. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2015).

    Google Scholar 

  19. Krauskopf, T., Culver, S. P. & Zeier, W. G. Bottleneck of diffusion and inductive effects in Li10Ge1–xSnxP2S12. Chem. Mater. 30, 1791–1798 (2018).

    CAS  Google Scholar 

  20. Hogrefe, K. et al. Opening diffusion pathways through site disorder: the interplay of local structure and ion dynamics in the solid electrolyte Li6+xP1–xGexS5I as probed by neutron diffraction and NMR. J. Am. Chem. Soc. 144, 1795–1812 (2022).

    CAS  Google Scholar 

  21. He, X., Zhu, Y. & Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8, 15893 (2017).

    CAS  Google Scholar 

  22. Canepa, P. et al. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017).

    Google Scholar 

  23. Muy, S. et al. Phonon–ion interactions: designing ion mobility based on lattice dynamics. Adv. Energy Mater. 11, 2002787 (2021).

    CAS  Google Scholar 

  24. Gao, Y. et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors. Chem. Rev. 120, 5954–6008 (2020).

    CAS  Google Scholar 

  25. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

    CAS  Google Scholar 

  26. Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

    CAS  Google Scholar 

  27. Gupta, M. K. et al. Fast Na diffusion and anharmonic phonon dynamics in superionic Na3PS4. Energy Environ. Sci. 14, 6554–6563 (2021).

    CAS  Google Scholar 

  28. Gupta, M. K. et al. Soft-phonon anharmonicity, floppy modes, and Na diffusion in Na3FY (Y = S,Se,Te): ab initio and machine-learned molecular dynamics simulations. Phys. Rev. B 106, 014311 (2022).

    CAS  Google Scholar 

  29. Gupta, M. K. et al. Strongly anharmonic phonons and their role in superionic diffusion and ultralow thermal conductivity of Cu7PSe6. Adv. Energy Mater. 12, 2200596 (2022).

    CAS  Google Scholar 

  30. Bernges, T. et al. Considering the role of ion transport in diffuson‐dominated thermal conductivity. Adv. Energy Mater. 12, 2200717 (2022).

    CAS  Google Scholar 

  31. Lin, S., Li, W. & Pei, Y. Thermally insulative thermoelectric argyrodites. Mater. Today 48, 198–213 (2021).

    CAS  Google Scholar 

  32. Jin, M. et al. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chem. Mater. 31, 2603–2610 (2019).

    CAS  Google Scholar 

  33. Sakata, M. & Sato, M. Accurate structure analysis by the maximum‐entropy method. Acta Crystallogr. A 46, 263–270 (1990).

    Google Scholar 

  34. Burankova, T. et al. Collective ion diffusion and localized single particle dynamics in pyridinium-based ionic liquids. J. Phys. Chem. B 118, 14452–14460 (2014).

    CAS  Google Scholar 

  35. Zhang, X. et al. Thermoelectric properties of n-type Nb-doped Ag8SnSe6. J. Appl. Phys. 119, 135101 (2016).

    Google Scholar 

  36. Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).

    CAS  Google Scholar 

  37. Koza, M. M. et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat. Mater. 7, 805–810 (2008).

    CAS  Google Scholar 

  38. Chen, Z. et al. Rationalizing phonon dispersion for lattice thermal conductivity of solids. Natl Sci. Rev. 5, 888–894 (2018).

    CAS  Google Scholar 

  39. Maughan, A. E. et al. Lowering the activation barriers for lithium-ion conductivity through orientational disorder in the cyanide argyrodite Li6PS5CN. Chem. Mater. 33, 5127–5136 (2021).

    CAS  Google Scholar 

  40. Fang, H. & Jena, P. Argyrodite-type advanced lithium conductors and transport mechanisms beyond peddle-wheel effect. Nat. Commun. 13, 2078 (2022).

    CAS  Google Scholar 

  41. Smith, J. G. & Siegel, D. J. Low-temperature paddlewheel effect in glassy solid electrolytes. Nat. Commun. 11, 1483 (2020).

    CAS  Google Scholar 

  42. Dennler, G. et al. Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv. Energy Mater. 4, 1301581 (2014).

    Google Scholar 

  43. Jood, P., Chetty, R. & Ohta, M. Structural stability enables high thermoelectric performance in room temperature Ag2Se. J. Mater. Chem. A 8, 13024–13037 (2020).

    CAS  Google Scholar 

  44. Mao, T. et al. Enhanced thermoelectric performance and service stability of Cu2Se via tailoring chemical compositions at multiple atomic positions. Adv. Funct. Mater. 30, 1908315 (2020).

    CAS  Google Scholar 

  45. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55–69 (1993).

    Google Scholar 

  46. Momma, K. et al. Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr. 28, 184–193 (2013).

    CAS  Google Scholar 

  47. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Google Scholar 

  48. Wong, L. L. et al. Bond valence pathway analyzer—an automatic rapid screening tool for fast ion conductors within softBV. Chem. Mater. 33, 625–641 (2021).

    CAS  Google Scholar 

  49. Lohstroh, W. & Evenson, Z. TOFTOF: cold neutron time-of-flight spectrometer. J. Large Scale Res. Facil. 1, A15 (2015).

    Google Scholar 

  50. Nakajima, K. et al. Recent update of AMATERAS: a cold-neutron disk-chopper spectrometer. JPS Conf. Proc. 33, 011089 (2021).

    Google Scholar 

  51. Inamura, Y. et al. Development status of software ‘Utsusemi’ for chopper spectrometers at MLF, J-PARC. J. Phys. Soc. Jpn 82, SA031 (2013).

    Google Scholar 

  52. Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    CAS  Google Scholar 

  53. Azuah, R. T. et al. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).

    CAS  Google Scholar 

  54. Ren, Q. et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nat. Commun. 13, 2293 (2022).

    CAS  Google Scholar 

  55. Ren, Q. et al. Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials. Nat. Commun. 11, 3142 (2020).

    CAS  Google Scholar 

  56. Danilkin, S. A. et al. The TAIPAN thermal triple-axis spectrometer at the OPAL reactor. J. Neutron Res. 15, 55–60 (2007).

    Google Scholar 

  57. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  58. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997).

    CAS  Google Scholar 

  59. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  60. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  61. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    CAS  Google Scholar 

  62. Wang, H. et al. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    CAS  Google Scholar 

  63. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  64. Zhou, Y. et al. Thermal transport crossover from crystalline to partial-crystalline partial-liquid state. Nat. Commun. 9, 4712 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

J.M. thanks the National Science Foundation of China for the financial support (grant no. U1732154). Q.R. thanks the Guangdong Basic and Applied Basic Research Foundation (grant no. 2021B1515140014), the National Natural Science Foundation of China (grant no. 52101236), the Institute of High Energy Physics, Chinese Academy of Science (grant no. E15154U110) and the Open Project of Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education; grant no. 2020-05). J.D. and O.D. were supported by the US National Science Foundation DMREF award (no. DMR-2119273). Y.P. thanks the National Science Foundation of China for support (no. T2125008). M.J. thanks the National Science Foundation of China for financial support (grant no. 52272006) and the ‘Shuguang Program’ from the Shanghai Education Development Foundation and Shanghai Municipal Education Commission. Z. Cheng thanks the Australia Research Council for support (no. DP210101436). X.T. acknowledges the financial support from the Guangdong Basic and Applied Basic Research Foundation (grant no. 2019B1515120079). Q.R. thanks Y. Guo and H. Su from ShanghaiTech University for the help on crystal alignment, and S. Danilkin, D. Yu and C.-W. Wang from the Australian Nuclear Science and Technology Organisation for the assistance with neutron data collection. We all acknowledge the beam time granted by Institut Laue-Langevin (proposal nos 5-14-263 and 5-14-268), Heinz Maier-Leibnitz (proposal no. 14754), J-PARC (proposal nos 2018B0262 and 2020A0228) and the Australian Nuclear Science and Technology Organisation (proposal no. P7875), and the technical support from Q. Gu during the experiments at the Australian Synchrotron.

Author information

Authors and Affiliations

Authors

Contributions

Q.R., O.D. and J.M. conceived the project. M.J., Z. Chen, S.L. and Y.P. prepared the single-crystal samples, and Q.R. aligned the crystals with help from G.W.; J. Wang and Z. Cheng performed the SXRD measurements, and Q.R. analysed the results. Q.R. carried out the SCND measurements and structural analyses with help from J. Wu, O.F. and J.A.R.-V. Neutron scattering measurements were conducted by Q.R., M.K., K.N., M.W., F.Z. and J. Wu and were analysed by Q.R. with assistance from X.T. and J.M.; M.K.G., J.D. and O.D. performed the first-principles and MLMD simulations. Q.R., O.D. and J.M. drafted the manuscript. All authors edited and finalized the manuscript.

Corresponding authors

Correspondence to Yanzhong Pei, Olivier Delaire or Jie Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6, Figs. 1–24, Tables 1 and 2 and refs. 1–7.

Reporting Summary

Supplementary Code 1

The initial structure file in LAMMPS format, neural network force-field file generated using DeePMD-kit code, LAMMPS input file, Fortran script and input file for lattice thermal conductivity calculations using time dependence heat flux.

Source data

Source Data Fig. 1

SXRD data plotted in Fig. 1a,b; and the lattice parameters as a function of temperature plotted in Fig. 1c.

Source Data Fig. 2

INS data plotted in Fig. 2a–c; INS data and QENS analysis plotted in Fig. 2d; and S(Q,E) data from MLMD simulations plotted in Fig. 2e.

Source Data Fig. 3

INS data plotted in Fig. 3a–d; partial phonon DOS from MLMD simulations plotted in Fig. 3e,f; and MSD values from MLMD simulations plotted in Fig. 3g,h.

Source Data Fig. 4

INS data plotted in Fig. 4a–c; Bose-factor-corrected dynamic structure factor plotted in Fig. 4d; and neutron-weighted DOS over energy transfer from MLMD simulations plotted in Fig. 4e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Gupta, M.K., Jin, M. et al. Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6. Nat. Mater. 22, 999–1006 (2023). https://doi.org/10.1038/s41563-023-01560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01560-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing