Abstract
Metal–organic framework (MOF) membranes are energy-efficient candidates for molecular separations, but it remains a considerable challenge to eliminate defects at the atomic scale. The enlargement of pores due to defects reduces the molecular-sieving performance in separations and hampers the wider application of MOF membranes, especially for liquid separations, owing to insufficient stability. Here we report the elimination of lattice defects in MOF membranes based on a high-probability theoretical coordination strategy that creates sufficient chemical potential to overcome the steric hindrance that occurs when completely connecting ligands to metal clusters. Lattice defect elimination is observed by real-space high-resolution transmission electron microscopy and studied with a mathematical model and density functional theory calculations. This leads to a family of high-connectivity MOF membranes that possess ångström-sized lattice apertures that realize high and stable separation performance for gases, water desalination and an organic solvent azeotrope. Our strategy could enable a platform for the regulation of nanoconfined molecular transport in MOF pores.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All the data needed to evaluate the conclusions in the Article are present in the main text or the Supplementary Information. Source data are provided with this paper.
References
Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).
Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).
Park, C. H. et al. Nanocrack-regulated self-humidifying membranes. Nature 532, 480–483 (2016).
Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).
Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).
Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).
Shen, J. et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nat. Mater. 21, 1183–1190 (2022).
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).
Lively, R. P. & Sholl, D. S. From water to organics in membrane separations. Nat. Mater. 16, 276–279 (2017).
Shen, J., Liu, G. P., Han, Y. & Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
Knebel, A. & Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022).
Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).
Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).
Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).
Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017).
Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).
Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).
Knebel, A. et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).
Zhou, S. et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706–712 (2022).
Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).
Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).
Qiu, S., Xue, M. & Zhu, G. Metal–organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014).
Denny, M. S., Moreton, J. C., Benz, L. & Cohen, S. M. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).
Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).
Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).
Fang, Z., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect‐engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).
Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).
Pan, Y., Li, T., Lestari, G. & Lai, Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390, 93–98 (2012).
Brown, A. J. et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345, 72–75 (2014).
Venna, S. R. & Carreon, M. A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 132, 76–78 (2010).
Zhang, H., Liu, D., Yao, Y., Zhang, B. & Lin, Y. Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J. Membr. Sci. 485, 103–111 (2015).
Jian, M. et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6, eaay3998 (2020).
Liu, X., Demir, N. K., Wu, Z. & Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).
Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).
Liu, X. L., Wang, X. R. & Kapteijn, F. Water and metal-organic frameworks: from interaction toward utilization. Chem. Rev. 120, 8303–8377 (2020).
Cong, S. Z. et al. Highly water-permeable metal-organic framework MOF-303 membranes for desalination. J. Am. Chem. Soc. 143, 20055–20058 (2021).
Yuan, S. et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).
Wang, X. L. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).
Yan, J. H. et al. Room-temperature synthesis of defect-engineered zirconium-MOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source. J. Membr. Sci. 653, 120496 (2022).
Lee, T. H. et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem. Int. Ed. 60, 13081–13088 (2021).
Guillerm, V. & Eddaoudi, M. The importance of highly connected building units in reticular chemistry: thoughtful design of metal–organic frameworks. Acc. Chem. Res. 54, 3298–3312 (2021).
Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).
Song, C., Wang, P. & Makse, H. A. A phase diagram for jammed matter. Nature 453, 629–632 (2008).
Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).
Chen, Z. et al. Enhanced separation of butane isomers via defect control in a fumarate/zirconium-based metal organic framework. Langmuir 34, 14546–14551 (2018).
Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016).
Dissegna, S. et al. Tuning the mechanical response of metal–organic frameworks by defect engineering. J. Am. Chem. Soc. 140, 11581–11584 (2018).
Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).
Zhou, S. et al. Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nat. Energy 6, 882–891 (2021).
Acknowledgements
We thank X. Ren (School of Chemistry and Molecular Engineering, Nanjing Tech University) for discussions. W.Q.J. acknowledges funding from the National Natural Science Foundation of China (grant numbers 22038006 and 21921006) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). G.P.L. acknowledges funding from the National Natural Science Foundation of China (grant number 22278210) and the Natural Science Foundation of Jiangsu Province (grant number BK20220002). G.Z.L. acknowledges funding from the Project funded by the China Postdoctoral Science Foundation (grant numbers 2022TQ0147 and 2022M721584). We thank the High-Performance Computing Center of Nanjing Tech University for supporting the computational resources.
Author information
Authors and Affiliations
Contributions
W.J. and Gongping Liu conceived the idea. W.J., Gongping Liu and Guozhen Liu designed the experiments, analysed the data and wrote the manuscript. Guozhen Liu synthesized and characterized the membranes. Y.G. conducted the density functional theory simulations. C.C. and Y.H. collected and analysed the low-dose HRTEM data. Y.L. conducted and analysed the probability calculations. G.C. collected and analysed the Powder XRD data. Guozhen Liu, Y.G., C.C., Y.L., Gongping Liu, Y.H., W.J. and N.X. discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 HRTEM of perfect lattice in Zr-MOF(BDC) membrane.
Image processing of the labelled region in Supplementary Fig. 18. (a) Raw image (b) the corresponding Fourier transform; (c) CTF-corrected image; (d) ABSF-filtered CTF-corrected image.
Extended Data Fig. 2 HRTEM of defective lattice in Zr-MOF(BDC) membrane.
Image processing of the labelled region in Supplementary Fig. 19. (a) Raw image (b) the corresponding Fourier transform; (c) CTF-corrected image; (d) ABSF-filtered CTF-corrected image.
Extended Data Fig. 3 NMR analysis of lattice defects in Zr-MOF membranes.
1H NMR spectra of Zr-MOF(fumarate) (a) and Zr-MOF(BDC) (b) membranes synthesized using ligand/SBU stoichiometric ratio.
Extended Data Fig. 4 DFT calculations.
The diagram for models of Zr-MOF(fumarate) with one Zr6O4(OH)412+ metal cluster and five ligands in a specific direction (regarded as Zr6O4(OH)412+/fumarate) (a) from the optimized crystal structure of Zr-MOF(fumarate) (b) and ZIF-8 with one Zn2+ and four mIm ligands, regarded as Zn2+/mIm (c) from the optimized crystal structure of ZIF-8 (d).
Extended Data Fig. 5 Methanol/DMC separation.
Long-term stability of methanol/DMC separation of Zr-MOF(fumarate) membrane, the feed concentration of methanol is 10 wt% and the operating temperature is 50 oC.
Extended Data Fig. 6 Universal of various substrates for Zr-MOF membrane synthesis.
Digital photos of various substrates (S) and SEM surface and cross-sectional images of Zr-MOF(fumarate) membrane (M) synthesized on different substrates including PAN, PVDF, Yttria Stabilized Zirconia (YSZ) hollow fiber and ceramic tube.
Supplementary information
Supplementary Information
Supplementary Figs. 1–59, Tables 1–13, Methods, Text and references.
Supplementary Data 1
The atomic coordinates of the models for the energy scan calculations in Fig. 3d.
Supplementary Data 2
The atomic coordinates of the models for the electrostatic potential (ESP) calculations in Fig. 3e.
Supplementary Data 3
The atomic coordinates of the models for the average local ionization energy (ALIE) calculations in Supplementary Fig. 32.
Source data
Source Data Fig. 2
Source data for PXRD data plotted in Fig. 2g, CO2 adsorption plotted in Fig. 2h, N2 adsorption plotted in Fig. 2i and 1H NMR data plotted in Fig. 2j.
Source Data Fig. 3
Source data for connectivity and H2/CO2 selectivity plotted in Fig. 3a,b, expectation connectivity in Fig. 3c and potential energy barriers plotted in Fig. 3d.
Source Data Fig. 4
Source data for H2/CO2 separation plotted in Fig. 4a, and comparison to literature in Fig. 4b, permeation rate of ions in Fig. 4c, water flux and NaCl selectivity in Fig. 4d and comparison to literature in Fig. 4e, and water/DMC separation factor and flux in Fig. 4f.
Source Data Extended Data Fig. 3
Source data for NMR data plotted in Extended Data Fig. 3.
Source Data Extended Data Fig. 5
Source data for long-term water/DMC separation performance plotted in Extended Data Fig. 5.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, G., Guo, Y., Chen, C. et al. Eliminating lattice defects in metal–organic framework molecular-sieving membranes. Nat. Mater. 22, 769–776 (2023). https://doi.org/10.1038/s41563-023-01541-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-023-01541-0
This article is cited by
-
Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation
Nature Communications (2024)
-
Thermoregulatory molecular sieving in crystals
Science China Materials (2024)
-
Recent progress on the synthesis of defective UiO-66 for thermal catalysis
Nano Research (2024)
-
Nearly lattice-defect-free MOF membranes
Science China Chemistry (2024)
-
Unlocked sieving potential
Nature Materials (2023)