Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging the strain evolution of a platinum nanoparticle under electrochemical control

Abstract

Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here we exploit coherent diffraction at the new fourth-generation Extremely Brilliant Source of the European Synchrotron Radiation Facility to map and quantify strain within individual Pt catalyst nanoparticles under electrochemical control. Three-dimensional nanoresolution strain microscopy, together with density functional theory and atomistic simulations, show evidence of heterogeneous and potential-dependent strain distribution between highly coordinated ({100} and {111} facets) and undercoordinated atoms (edges and corners), as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of the experimental setup to image strain distribution onto a single Pt nanoparticle.
Fig. 2: Influence of electrode potential on surface strain (ε002).
Fig. 3: Distributions of surface versus bulk strain, facet versus edge/corner strain and top/bottom facet versus side facet strain as a function of electrode potential.
Fig. 4: Modelling indicates that strain gradients are largely independent of crystallite size.
Fig. 5: Adsorption configurations of HSO4 on Pt model morphological features (periodic slab modes) and their associated strain response along the [002] direction.
Fig. 6: Mechanical accommodation of a Pt nanoparticle following (bi)sulfate ion adsorption.

Similar content being viewed by others

Data availability

When published the data will be uploaded to the CXI database (https://www.cxidb.org) and is available here (https://data.esrf.fr/doi/10.15151/ESRF-DC-1104468572).

Code availability

The code used can be found in refs. 42,45,52.

References

  1. Hammer, B. & Nørskov, J. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995).

    Article  CAS  Google Scholar 

  2. Yang, H. Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem. Int. Ed. Engl. 50, 2674–2676 (2011).

    Article  CAS  Google Scholar 

  3. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

    Article  CAS  Google Scholar 

  4. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  5. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  6. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  CAS  Google Scholar 

  7. Bandarenka, A. S., Hansen, H. A., Rossmeisl, J. & Stephens, I. E. L. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 16, 13625–13629 (2014).

    Article  CAS  Google Scholar 

  8. Dubau, L. et al. Defects do catalysis: CO monolayer oxidation and oxygen reduction reaction on hollow PtNi/C nanoparticles. ACS Catal. 6, 4673–4684 (2016).

    Article  CAS  Google Scholar 

  9. Chattot, R. et al. Beyond strain and ligand effects: microstrain-induced enhancement of the oxygen reduction reaction kinetics on various PtNi/C nanostructures. ACS Catal. 7, 398–408 (2017).

    Article  CAS  Google Scholar 

  10. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article  CAS  Google Scholar 

  11. Sneed, B. T., Young, A. P. & Tsung, C.-K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7, 12248–12265 (2015).

    Article  CAS  Google Scholar 

  12. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  13. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  Google Scholar 

  14. Calle-Vallejo, F. et al. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem. Sci. 8, 2283–2289 (2017).

    Article  CAS  Google Scholar 

  15. Rück, M., Bandarenka, A., Calle-Vallejo, F. & Gagliardi, A. Oxygen reduction reaction: rapid prediction of mass activity of nanostructured platinum electrocatalysts. J. Phys. Chem. Lett. 9, 4463–4468 (2018).

    Article  Google Scholar 

  16. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition- metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  Google Scholar 

  17. Busch, M. et al. Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 29, 126–135 (2016).

    Article  CAS  Google Scholar 

  18. Robinson, I. & Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291–298 (2009).

    Article  CAS  Google Scholar 

  19. Ulvestad, A. et al. In situ 3D imaging of catalysis induced strain in gold nanoparticles. J. Phys. Chem. Lett. 7, 3008–3013 (2016).

    Article  CAS  Google Scholar 

  20. Passos, A. R. et al. Three-dimensional strain dynamics govern the hysteresis in heterogeneous catalysis. Nat. Commun. 11, 4733 (2020).

    Article  CAS  Google Scholar 

  21. Hua, W. et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019).

    Article  Google Scholar 

  22. Choi, S. et al. In situ strain evolution on Pt nanoparticles during hydrogen peroxide decomposition. Nano Lett. 20, 8541–8548 (2020).

    Article  CAS  Google Scholar 

  23. Ulvestad, A. et al. Single particle nanomechanics in operando batteries via lensless strain mapping. Nano Lett. 14, 5123–5127 (2014).

    Article  CAS  Google Scholar 

  24. Björling, A. et al. Coherent Bragg imaging of 60 nm Au nanoparticles under electrochemical control at the NanoMAX beamline. J. Synchrotron Radiat. 26, 1830–1834 (2019).

    Article  Google Scholar 

  25. Carnis, J. et al. Towards a quantitative determination of strain in Bragg coherent X-ray diffraction imaging: artefacts and sign convention in reconstructions. Sci. Rep. 9, 17357 (2019).

    Article  Google Scholar 

  26. Hartl, K. et al. Electrochemically induced nanocluster migration. Electrochim. Acta 56, 810–816 (2010).

    Article  CAS  Google Scholar 

  27. Dubau, L., Castanheira, L., Berthomé, G. & Maillard, F. An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochim. Acta 110, 273–281 (2013).

    Article  CAS  Google Scholar 

  28. Melroy, O. R. et al. Two-dimensional compressibility of electrochemically adsorbed lead on silver (111). Phys. Rev. B 38, 10962–10965 (1988).

    Article  CAS  Google Scholar 

  29. Chen, Q.-S., Solla-Gullón, J., Sun, S.-G. & Feliu, J. M. The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: the role of anion adsorption in fundamental electrocatalysis. Electrochim. Acta 55, 7982–7994 (2010).

    Article  CAS  Google Scholar 

  30. Chattot, R. et al. Electrochemical strain dynamics in noble metal nanocatalysts. J. Am. Chem. Soc. 143, 17068–17078 (2021).

    Article  CAS  Google Scholar 

  31. Ito, M. Structures of water at electrified interfaces: microscopic understanding of electrode potential in electric double layers on electrode surfaces. Surf. Sci. Rep. 63, 329–389 (2008).

    Article  CAS  Google Scholar 

  32. Faguy, P. W., Marinković, N. S. & Adžić, R. R. An in situ infrared study on the effect of pH on anion adsorption at Pt(111) electrodes from acid sulfate solutions. Langmuir 12, 243–247 (1996).

    Article  CAS  Google Scholar 

  33. Shingaya, Y. & Ito, M. Model double layer structures on M(111) (M=Pt, Rh, Au, Cu and Ag) in a sulfuric acid solution. Electrochim. Acta 44, 889–895 (1998).

    Article  CAS  Google Scholar 

  34. Martens, I. et al. Probing the dynamics of platinum surface oxides in fuel cell catalyst layers using in situ X-ray diffraction. ACS Appl. Energy Mater. 2, 7772–7780 (2019).

    Article  CAS  Google Scholar 

  35. Marković, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  Google Scholar 

  36. Wu, J. et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 134, 11880–11883 (2012).

    Article  CAS  Google Scholar 

  37. Kim, J. W. et al. Curvature-induced and thermal strain in polyhedral gold nanocrystals. Appl. Phys. Lett. 105, 173108 (2014).

    Article  Google Scholar 

  38. Watari, M. et al. Differential stress induced by thiol adsorption on facetted nanocrystals. Nat. Mater. 10, 862–866 (2011).

    Article  CAS  Google Scholar 

  39. Kim, D. et al. Active site localization of methane oxidation on Pt nanocrystals. Nat. Commun. 9, 3422 (2018).

    Article  Google Scholar 

  40. Santana, J. A. & Ishikawa, Y. DFT calculations of the electrochemical adsorption of sulfuric acid anions on the Pt(110) and Pt(100) Surfaces. Electrocatalysis 11, 86–93 (2020).

    Article  CAS  Google Scholar 

  41. Colorcet 1.0.0 documentation. https://colorcet.holoviz.org/ (accessed 15 March 2023).

  42. Atlan, C. et al. clatlan/cdiutils: v0.1.3. Zenodo https://doi.org/10.5281/zenodo.7656854 (2023).

  43. Ponchut, C. et al. MAXIPIX, a fast readout photon-counting X-ray area detector for synchrotron applications. J. Instrum. 6, C01069 (2011).

    Article  Google Scholar 

  44. Favre-Nicolin, V., Coraux, J., Richard, M.-I. & Renevier, H. Fast computing of scattering maps of nanostructures using graphical processing units. J. Appl. Crystallogr. 44, 635–640 (2011).

    Article  CAS  Google Scholar 

  45. Favre-Nicolin, V. et al. PyNX: high-performance computing toolkit for coherent X-ray imaging based on operators. J. Appl. Crystallogr. 53, 1404–1413 (2020).

    Article  CAS  Google Scholar 

  46. Luke, D. R. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2004).

    Article  Google Scholar 

  47. Gerchberg, R. & Saxton, O. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  48. Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978).

    Article  CAS  Google Scholar 

  49. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  Google Scholar 

  50. Clark, J. N., Huang, X., Harder, R. & Robinson, I. K. High-resolution three-dimensional partially coherent diffraction imaging. Nat. Commun. 3, 993 (2012).

    Article  CAS  Google Scholar 

  51. Favre-Nicolin, V., Leake, S. & Chushkin, Y. Free log-likelihood as an unbiased metric for coherent diffraction imaging. Sci. Rep. 10, 2664 (2020).

    Article  CAS  Google Scholar 

  52. Carnis, J. et al. carnisj/bcdi: v0.2.3. Zenodo https://doi.org/10.5281/zenodo.5963911 (2022).

  53. Grothausmann, R. et al. Automated quantitative 3D analysis of faceting of particles in tomographic datasets. Ultramicroscopy 122, 65–75 (2012).

    Article  CAS  Google Scholar 

  54. Grothausmann, R. & Beare, R. Facet Analyser: Paraview plugin for automated facet detection and measurement of interplanar angles of tomographic objects. https://doi.org/10.54294/bssu14 (2015).

  55. Prakash, A., Hummel, M., Schmauder, S. & Bitzek, E. Nanosculpt: a methodology for generating complex realistic configurations for atomistic simulations. MethodsX 3, 219–230 (2016).

    Article  CAS  Google Scholar 

  56. Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  57. Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  58. Foiles, S. M., Baskes, M. I. & Daw, M. S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986).

    Article  CAS  Google Scholar 

  59. Favre-Nicolin, V., Coraux, J., Richard, M.-I. & Renevier, H. Fast computation of scattering maps of nanostructures using graphical processing units. J. Appl. Crystallogr. 44, 635–640 (2011).

    Article  CAS  Google Scholar 

  60. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  61. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  62. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  63. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements h-pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  64. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the European Synchrotron Radiation Facility for allocating beamtime, and the ID01 beamline staff for their excellent support during measurements. This project received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 818823 to M.-I.R.). The authors thank É. Gaudry, P. Sautet and T. Deutsch for fruitful discussions on DFT simulations. The authors also thank B. Gilles for his help and advice during the preparation of samples, and J. P. Hofmann and E. J. M. Hensen for insightful advice.

Author information

Authors and Affiliations

Authors

Contributions

M.-I.R. and F.M. conceived and designed experiments. L.G. developed the electrochemical cell and performed Pt/GC synthesis. C.A., I.M., M.D., N.L., S.J.L., T.U.S., A.V., F.M. and M.-I.R. performed in situ BCDI measurements. C.A., C.C. and M.-I.R. analysed data. C.C. performed MSS and DFT calculations. C.A. wrote the first version of the manuscript. C.A., C.C., I.M., J.E., F.M. and M.-I.R. revised the manuscript.

Corresponding authors

Correspondence to Clément Atlan, Corentin Chatelier, Frédéric Maillard or Marie-Ingrid Richard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ian Robinson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlan, C., Chatelier, C., Martens, I. et al. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. Nat. Mater. 22, 754–761 (2023). https://doi.org/10.1038/s41563-023-01528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01528-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing