Abstract
Spherical ferroelectric domains, such as electrical bubbles, polar skyrmion bubbles and hopfions, share a single and unique feature—their homogeneously polarized cores are surrounded by a vortex ring of polarization whose outer shells form a spherical domain boundary. The resulting polar texture, typical of three-dimensional topological solitons, has an entirely new local symmetry characterized by a high polarization and strain gradients. Consequently, spherical domains represent a different material system of their own with emergent properties drastically different from that of their surrounding medium. Examples of new functionalities inherent to spherical domains include chirality, optical response, negative capacitance and giant electromechanical response. These characteristics, particularly given that the domains naturally have an ultrafine scale, offer new opportunities in high-density and low-energy nanoelectronic technologies. This Perspective gives an insight into the complex polar structure and physical origin of these spherical domains, which facilitates the understanding and development of spherical domains for device applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Lu, L. et al. Topological defects with distinct dipole configurations in PbTiO3/SrTiO3 multilayer films. Phys. Rev. Lett. 120, 177601 (2018).
Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).
Arnold, V. I. Topological Methods in Hydrodynamics (Springer, 1998).
Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).
Fu, H. & Bellaiche, L. Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003).
Zhu, X. et al. Perovskite lead zirconium titanate nanorings: towards nanoscale ferroelectric ‘solenoids’? Appl. Phys. Lett. 89, 122913 (2006).
Rodriguez, B. et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009).
Lai, B.-K. et al. Electric-field-induced domain evolution in ferroelectric ultrathin films. Phys. Rev. Lett. 96, 137602 (2006).
Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).
Hill, M. J. M. VI On a spherical vortex. Phil. Trans. R. Soc. A 185, 213–245 (1894).
Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 29, 1702375 (2017).
Gao, X. S. et al. Bubble polarization domain patterns in periodically ordered epitaxial ferroelectric nanodot arrays. J. Appl. Phys. 110, 052006 (2011).
Lichtensteiger, C. et al. Tuning of the depolarization field and nanodomain structure in ferroelectric thin films. Nano Lett. 14, 4205–4211 (2014).
Edwards, D. et al. Giant resistive switching in mixed phase BiFeO3 via phase population control. Nanoscale 10, 17629–17637 (2018).
Tikhonov, Y. et al. Controllable skyrmion chirality in ferroelectrics. Sci. Rep. 10, 8657 (2020).
Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).
Chen, X. et al. Nonvolatile data storage using mechanical force-induced polarization switching in ferroelectric polymer. Appl. Phys. Lett. 106, 042903 (2015).
Zhang, Q. et al. Deterministic switching of ferroelectric bubble nanodomains. Adv. Funct. Mater. 29, 1808573 (2019).
Bakaul, S. R. et al. Freestanding ferroelectric bubble domains. Adv. Mater. 33, 2105432 (2021).
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Gonçalves, M. P., Escorihuela-Sayalero, C., Garca-Fernández, P., Junquera, J. & Íñiguez, J. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).
Das, S. et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat. Mater. 20, 194–201 (2021).
Wei, X.-K. et al. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals. Nat. Commun. 7, 12385 (2016).
Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).
Damodaran, A. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).
Stoica, V. et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat. Mater. 18, 377–383 (2019).
Garel, A. Boundary conditions for textures and defects. J. Phys. Fr. 39, 225–229 (1978).
Whitehead, J. An expression of Hopf’s invariant as an integral. Proc. Natl Acad. Sci. USA 33, 117–123 (1947).
Thorner, G., Kiat, J.-M., Bogicevic, C. & Kornev, I. Axial hypertoroidal moment in a ferroelectric nanotorus: a way to switch local polarization. Phys. Rev. B 89, 220103 (2014).
Li, L. et al. Defect-induced hedgehog polarization states in multiferroics. Phys. Rev. Lett. 120, 137602 (2018).
Nahas, Y., Prokhorenko, S. & Kornev, I. Interplay between pressure and local symmetry in (Pb1–3/2xLax)(Zr60Ti40) O3: emergence of a relaxor state. Phys. Rev. B 90, 180102 (2014).
Nahas, Y., Prokhorenko, S., Kornev, I. & Bellaiche, L. Topological point defects in relaxor ferroelectrics. Phys. Rev. Lett. 116, 127601 (2016).
Prokhorenko, S., Nahas, Y. & Bellaiche, L. Fluctuations and topological defects in proper ferroelectric crystals. Phys. Rev. Lett. 118, 147601 (2017).
Prokhorenko, S., Nahas, Y. & Kornev, I. Finite-temperature properties of (BiFeO3)x(BaTiO3)1−x solid solutions. Phys. Rev. B 90, 140201 (2014).
Govinden, V. et al. Stability of ferroelectric bubble domains. Phys. Rev. Mater. 7, L011401 (2023).
Govinden, V. et al. Controlling topological defect transitions in nanoscale lead zirconate titanate heterostructures. Phys. Rev. Mater. 5, 124205 (2021).
Chenskii, E. V. & Tarasenko, V. V. Theory of phase transitions into inhomogeneous states in organic ferroelectrics in an external electric field. Sov. Phys. JETP 56, 618–623 (1982).
Kornev, I., Fu, H. & Bellaiche, L. Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. Phys. Rev. Lett. 93, 196104 (2004).
Nahas, Y. et al. Topology and control of self-assembled domain patterns in low-dimensional ferroelectrics. Nat. Commun. 11, 5779 (2020).
Zhu, R. et al. Dynamics of polar skyrmion bubbles under electric fields. Phys. Rev. Lett. 129, 107601 (2022).
Hong, Z. & Chen, L.-Q. Blowing polar skyrmion bubbles in oxide superlattices. Acta Mater. 152, 155–161 (2018).
Nahas, Y., Prokhorenko, S. & Bellaiche, L. Frustration and self-ordering of topological defects in ferroelectrics. Phys. Rev. Lett. 116, 117603 (2016).
Govinden, V., Zhang, Q., Sando, D. & Valanoor, N. Depolarization field tuning of nanoscale ferroelectric domains in (001) PbZr0.4Ti0.6O3/SrTiO3/PbZr0.4Ti0.6O3 epitaxial heterostructures. J. Appl. Phys. 129, 024104 (2021).
Peng, W. et al. Oxygen vacancy-induced topological nanodomains in ultrathin ferroelectric films. npj Quantum Mater. 6, 48 (2021).
Yin, J. et al. Nanoscale bubble domains with polar topologies in bulk ferroelectrics. Nat. Commun. 12, 3632 (2021).
Zhuo, F. & Yang, C.-H. Observation of a stable fractionalized polar skyrmion-like texture with giant piezoelectric response enhancement. Phys. Rev. B 102, 214112 (2020).
Shao, Y.-T. et al. Emergent chirality in a polar meron to skyrmion transition revealed by 4D-STEM. Microsc. Microanal. 27, 348–350 (2021).
Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).
Parkin, S. S., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).
Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).
Xing, X., Pong, P. W. & Zhou, Y. Skyrmion domain wall collision and domain wall-gated skyrmion logic. Phys. Rev. B 94, 054408 (2016).
Gruener, W. IBM puts millipede on public display. Tom’s Hardware http://www.tomshardware.com/news/ibm-puts-millipede-public-display,755.html (2005).
Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Bakaul, S. R. et al. Ferroelectric domain wall motion in freestanding single‐crystal complex oxide thin film. Adv. Mater. 32, 1907036 (2020).
Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016).
Bakaul, S. R. et al. High speed epitaxial perovskite memory on flexible substrates. Adv. Mater. 29, 1605699 (2017).
Baek, S. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).
Behera, P. et al. Electric field control of chirality. Sci. Adv. 8, eabj8030 (2022).
Dong, S., Liu, J.-M., Cheong, S.-W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).
Birch, M. et al. Real-space imaging of confined magnetic skyrmion tubes. Nat. Commun. 11, 1726 (2020).
Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).
Louis, L., Kornev, I., Geneste, G., Dkhil, B. & Bellaiche, L. Novel complex phenomena in ferroelectric nanocomposites. J. Phys. Condens. Matter 24, 402201 (2012).
Scase, M. M. & Terry, H. L. Spherical vortices in rotating fluids. J. Fluid Mech. 846, R4 (2018).
Acknowledgements
The research at the University of New South Wales (UNSW) was supported by DARPA grant no. HR0011727183-D18AP00010 (TEE Program), partially supported by the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies (project number CE170100039) and funded by the Australian Government. Q.Z. acknowledges the support of a Women in FLEET Fellowship. The research at the University of Arkansas is also supported by the Vannevar Bush Faculty Fellowship (VBFF) grant no. N00014-20-1-2834 from the Department of Defense, award no. DMR-1906383 from the National Science Foundation Q-AMASE-i Program (MonArk NSF Quantum Foundry) and an ARO grant no. W911NF- 21-2-0162 (ETHOS).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Govinden, V., Prokhorenko, S., Zhang, Q. et al. Spherical ferroelectric solitons. Nat. Mater. 22, 553–561 (2023). https://doi.org/10.1038/s41563-023-01527-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-023-01527-y