Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ambipolar charge-transfer graphene plasmonic cavities


Plasmon polaritons in van der Waals materials hold promise for various photonics applications1,2,3,4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light–matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OCT for on-demand graphene plasmonics.
Fig. 2: Achieving reconfigurable ambipolar carrier density and high plasmonic quality factor in van der Waals OCT structures.
Fig. 3: Nano-imprinting graphene plasmonic cavities via programmable OCT.
Fig. 4: Whispering-gallery modes in suspended graphene plasmonic cavities encapsulated in WOx.

Data availability

The data that support the findings within this paper are available from the corresponding authors upon reasonable request.


  1. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  2. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  3. Cox, J. D. & García de Abajo, F. J. Nonlinear graphene nanoplasmonics. Acc. Chem. Res. 52, 2536–2547 (2019).

    Article  CAS  Google Scholar 

  4. Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    Article  CAS  Google Scholar 

  5. Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    Article  CAS  Google Scholar 

  6. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  CAS  Google Scholar 

  7. Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

    Article  CAS  Google Scholar 

  8. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    Article  Google Scholar 

  9. Brar, V. W. et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. ACS Nano 13, 2541–2547 (2013).

    CAS  Google Scholar 

  10. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  11. Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    Article  CAS  Google Scholar 

  12. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    Article  CAS  Google Scholar 

  13. Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).

    Article  CAS  Google Scholar 

  14. Zhang, L. M. & Fogler, M. M. Nonlinear screening and ballistic transport in a graphene pn junction. Phys. Rev. Lett. 100, 116804 (2008).

    Article  CAS  Google Scholar 

  15. Sheinfux, H. H. et al. Bound in the continuum modes in indirectly-patterned hyperbolic media. Preprint at Research Square (2021).

  16. Choi, M. S. et al. High carrier mobility in graphene doped using a monolayer of tungsten oxyselenide. Nat. Electron. 4, 731–739 (2021).

    Article  CAS  Google Scholar 

  17. Sen, H. S., Sahin, H., Peeters, F. M. & Durgun, E. Monolayers of MoS2 as an oxidation protective nanocoating material. J. Appl. Phys. 116, 083508 (2014).

    Article  Google Scholar 

  18. Rietwyk, K. J. et al. Universal work function of metal oxides exposed to air. Adv. Mater. Interfaces 6, 1802058 (2019).

    Article  Google Scholar 

  19. Greiner, M. T. & Lu, Z.-H. Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5, e55 (2013).

    Article  CAS  Google Scholar 

  20. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    Article  CAS  Google Scholar 

  21. Kim, K. et al. Band alignment in WSe2–graphene heterostructures. ACS Nano 9, 4527–4532 (2015).

    Article  CAS  Google Scholar 

  22. Mews, M., Korte, L. & Rech, B. Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 158, 77–83 (2016).

    Article  CAS  Google Scholar 

  23. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  CAS  Google Scholar 

  24. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  25. Kechedzhi, K. & Das Sarma, S. Plasmon anomaly in the dynamical optical conductivity of graphene. Phys. Rev. B 88, 085403 (2013).

    Article  Google Scholar 

  26. Hu, H. et al. Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13, 1465 (2022).

    Article  CAS  Google Scholar 

  27. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonance in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    Article  CAS  Google Scholar 

  28. Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46–49 (2010).

    Article  CAS  Google Scholar 

  29. Aspelmeyer, M. et al. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  30. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  CAS  Google Scholar 

  31. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  CAS  Google Scholar 

  32. Kayes, B. M. & Atwater, H. A. Comparison of the device physics principle of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  33. Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017).

    Article  CAS  Google Scholar 

  34. Jing, R. et al. Terahertz response of monolayer and few-layer WTe2 at the nanoscale. Nat. Commun. 12, 5594 (2021).

    Article  CAS  Google Scholar 

Download references


Research on nanophotonic devices is solely supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. Research on charge-transfer interfaces is supported by DOE-BES under award DE-SC0018426. D.N.B. is Moore Investigator in Quantum Materials (EPIQS, GBMF9455) and Vannevar Bush Faculty Fellow (ONR-VB, N00014-19-1-2630).

Author information

Authors and Affiliations



B.S.Y.K., J.C.H. and D.N.B. conceived the project and designed the experiments. B.S.Y.K. and M.S.C. fabricated the devices with assistance from T.S.C., A.R., A.N. and S.H.C.; B.S.Y.K. and A.J.S. performed measurements with assistance from A.S.M., L.X. and Y.D.; and S.L. grew the WSe2 crystals. Z.S. performed the graphene plasmon scattering rate and Fano resonance simulations. B.S.Y.K. performed the full-wave eigenmode simulations with assistance from F.L.R. and A.S.M.; B.S.Y.K. and Y.S. performed the Kelvin probe force microscopy measurements. A.Z. performed the cross-sectional transmission electron microscopy measurements. X.X., A.J.M., P.J.S., C.R.D., J.C.H. and D.N.B. supervised the project. B.S.Y.K. analysed the data. B.S.Y.K. and D.N.B. cowrote the paper with input from all authors.

Corresponding authors

Correspondence to Brian S. Y. Kim or D. N. Basov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Alexey Nikitin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23 and Discussion Sections 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.S.Y., Sternbach, A.J., Choi, M.S. et al. Ambipolar charge-transfer graphene plasmonic cavities. Nat. Mater. (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing