Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys

Abstract

Uniform tensile ductility (UTD) is crucial for the forming/machining capabilities of structural materials. Normally, planar-slip induced narrow deformation bands localize the plastic strains and hence hamper UTD, particularly in body-centred-cubic (bcc) multi-principal element high-entropy alloys (HEAs), which generally exhibit early necking (UTD < 5%). Here we demonstrate a strategy to tailor the planar-slip bands in a Ti-Zr-V-Nb-Al bcc HEA, achieving a 25% UTD together with nearly 50% elongation-to-failure (approaching a ductile elemental metal), while offering gigapascal yield strength. The HEA composition is designed not only to enhance the B2-like local chemical order (LCO), seeding sites to disperse planar slip, but also to generate excess lattice distortion upon deformation-induced LCO destruction, which promotes elastic strains and dislocation debris to cause dynamic hardening. This encourages second-generation planar-slip bands to branch out from first-generation bands, effectively spreading the plastic flow to permeate the sample volume. Moreover, the profuse bands frequently intersect to sustain adequate work-hardening rate (WHR) to large strains. Our strategy showcases the tuning of plastic flow dynamics that turns an otherwise-undesirable deformation mode to our advantage, enabling an unusual synergy of yield strength and UTD for bcc HEAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic structure difference between aged- and WQ-T50 HEAs.
Fig. 2: Tensile properties of WQ- and aged-T50 HEAs.
Fig. 3: Microstructure evolution of aged-T50 HEAs during plastic deformation.
Fig. 4: Structure–property evolution in T50 HEAs on plastic deformation.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and Supplementary Information and are available from the corresponding authors upon reasonable request.

Code availability

The computer codes are available from the corresponding authors upon reasonable request.

References

  1. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS  Google Scholar 

  2. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Google Scholar 

  3. Gludovatz, B. et al. A failure-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1159 (2014).

    CAS  Google Scholar 

  4. Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011).

    CAS  Google Scholar 

  5. Ko, P. et al. Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 113, 107001 (2014).

    Google Scholar 

  6. An, Z. et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).

    CAS  Google Scholar 

  7. Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    CAS  Google Scholar 

  8. Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    CAS  Google Scholar 

  9. Antillon, E., Woodward, C., Rao, S. I. & Akdim, B. Chemical short range order strengthening in BCC complex concentrated alloys. Acta Mater. 215, 117012 (2021).

    CAS  Google Scholar 

  10. Yin, S. et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat. Commun. 12, 4873 (2021).

    CAS  Google Scholar 

  11. Li, Q. J., Sheng, H. & Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun. 10, 3563 (2019).

    Google Scholar 

  12. Yin, B., Yoshida, S., Tsuji, N. & Curtin, W. A. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nat. Commun. 11, 2507 (2020).

    CAS  Google Scholar 

  13. Ma, E. Unusual dislocation behavior in high-entropy alloys. Scr. Mater. 181, 127–133 (2020).

    CAS  Google Scholar 

  14. Bu, Y. et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Mater. Today 46, 28–34 (2021).

    CAS  Google Scholar 

  15. Chen, X. et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    CAS  Google Scholar 

  16. Chen, S. et al. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nat. Commun. 12, 4953 (2021).

    CAS  Google Scholar 

  17. Arne, M. Work hardening and softening in a dislocation glide plane with precipitates. Mater. Sci. Eng. 34, 235–240 (1978).

    Google Scholar 

  18. Gerold, V. & Karnthaler, H. P. On the origin of planar slip in f.c.c. alloys. Acta Metall. 37, 2177–2183 (1989).

    CAS  Google Scholar 

  19. Chong, Y. et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al. Nat. Commun. 12, 6158 (2021).

    CAS  Google Scholar 

  20. Sheikh, S. et al. Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902 (2016).

    Google Scholar 

  21. Wu, Y. D. et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277–280 (2014).

    CAS  Google Scholar 

  22. Sun, Q. Y. & Gu, H. C. Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti–5Al–2.5Sn alloy at 293 and 77 K. Mater. Sci. Eng. A 316, 80–86 (2001).

    Google Scholar 

  23. Yang, P., Li, Q., Tsuru, T. & Ogata, S. Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium. Acta Mater. 168, 331–342 (2019).

    CAS  Google Scholar 

  24. Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    CAS  Google Scholar 

  25. Ding, J., Yu, Q., Asta, M. & Ritchie, R. O. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl Acad. Sci. USA 115, 8919–8924 (2018).

    CAS  Google Scholar 

  26. Wang, L. et al. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater. Sci. Eng. A 814, 141234 (2021).

    CAS  Google Scholar 

  27. Chen, Y. et al. A single-phase V0.5Nb0.5ZrTi refractory high-entropy alloy with outstanding tensile properties. Mater. Sci. Eng. A 792, 139774 (2020).

    CAS  Google Scholar 

  28. Zhou, L. et al. Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy. Acta Mater. 224, 117490 (2022).

    CAS  Google Scholar 

  29. Hytch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    CAS  Google Scholar 

  30. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science (Springer, 2009).

  31. Soni, V. et al. Phase inversion in a two-phase, BCC + B2, refractory high entropy alloy. Acta Mater. 185, 89–97 (2020).

    CAS  Google Scholar 

  32. Wu, M. et al. Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy. J. Mater. Sci. Technol. 110, 210–215 (2022).

    CAS  Google Scholar 

  33. Yan, X., Liaw, P. K. & Zhang, Y. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. J. Mater. Sci. Technol. 110, 109–116 (2022).

    CAS  Google Scholar 

  34. Wei, S. et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 19, 1175–1181 (2020).

    CAS  Google Scholar 

  35. Jia, Y. et al. A lightweight refractory complex concentrated alloy with high strength and uniform ductility. Appl. Mater. Today 27, 101429 (2022).

    Google Scholar 

  36. Ma, Y. et al. Hexagonal closed-packed precipitation enhancement in a NbTiHfZr refractory high-entropy alloy. Metals 9, 485 (2019).

    CAS  Google Scholar 

  37. Wang, R. et al. Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys. Mater. Des. 213, 110356 (2022).

    CAS  Google Scholar 

  38. Huang, H. et al. On cooling rates dependence of microstructure and mechanical properties of refractory high-entropy alloys HfTaTiZr and HfNbTiZr. Scr. Mater. 211, 114506 (2022).

    CAS  Google Scholar 

  39. Wang, S. et al. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Mater. 201, 517–527 (2020).

    CAS  Google Scholar 

  40. Liao, Y. C. et al. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys. Intermetallics 117, 106673 (2020).

    CAS  Google Scholar 

  41. Pang, J. et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater. Lett. 290, 129428 (2021).

    CAS  Google Scholar 

  42. Akmal, M., Woo, H. & Jin, H. Mo and Ta addition in NbTiZr medium entropy alloy to overcome tensile yield strength-ductility trade-off. J. Mater. Sci. Technol. 109, 176–185 (2022).

    CAS  Google Scholar 

  43. Liu, L. et al. Dislocation network in additive manufactured steel breaks strength – ductility trade-off. Mater. Today 21, 354–361 (2018).

    CAS  Google Scholar 

  44. Wang, L. et al. Remarkable ductility in metastable refractory high entropy alloys via BCC-FCC/α″ martensitic transformations. Appl. Phys. Lett. 119, 151902 (2021).

    CAS  Google Scholar 

  45. Jiang, S. H. et al. Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels. Acta Mater. 213, 116984 (2021).

    CAS  Google Scholar 

  46. Rao, S. I. et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5. Acta Mater. 168, 222–236 (2019).

    CAS  Google Scholar 

  47. Chen, B. et al. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys. Scr. Mater. 222, 115048 (2023).

    CAS  Google Scholar 

  48. Ren, J. et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 608, 62–68 (2022).

    CAS  Google Scholar 

  49. Sohn, S. S. et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 31, 1807142 (2019).

    Google Scholar 

  50. Greer, A. L., Cheng, Y. Q. & Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R. 74, 71–132 (2013).

    Google Scholar 

  51. Hammersley, A. P., Svensson, S. & Thompson, A. Calibration and correction of spatial distortions in 2D detector systems. Nucl. Instrum. Methods Phys. Res. A 346, 312–321 (1994).

    CAS  Google Scholar 

  52. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    CAS  Google Scholar 

  53. Zunger, A., Wei, S., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990).

    CAS  Google Scholar 

  54. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  55. Krexner, G. & Hafner, J. Ab initio molecular-dynamics liquid-metal—amorphous-semiconductor simulation of the transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Google Scholar 

  56. Monkhorst, H. J. & Pack, J. D. Special points for Brillonin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976).

    Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 11–19 (1999).

    Google Scholar 

  58. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  59. Plimpton, S. Fast parallel algorithms for short range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  60. Sadigh, B. et al. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B 184203, 1–11 (2012).

    Google Scholar 

  61. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Google Scholar 

  62. Cowley, J. M. An approximate theory of order in alloys. Phys. Rev. 77, 669–675 (1950).

    CAS  Google Scholar 

Download references

Acknowledgements

Y.X. and Liang W. acknowledge support from National Natural Science Foundation of China (grant no. U2241234). Liang W. acknowledges support from China Postdoctoral Science Foundation (grant no. 2019M660482). J.D. acknowledges support from National Natural Science Foundation of China (grant no. 12004294) and National Youth Talents Program. E.M. acknowledges National Natural Science Foundation of China (grant no. 52231001) and the 111 Project (grant no. BP2018008). E.M. and J.D. thank the support by Center for Alloy Innovation and Design (CAID) and the HPC platform of Xi’an Jiaotong University. K.J. acknowledges support from National MCF Energy R&D Program (grant no. 2022YFE03120000). Y.R. acknowledges support from City University of Hong Kong (grant no. 9610533). S.Z. acknowledges support from the Key Project of Natural Science Foundation of Tianjin (grant no. 20JCZDJC00440). The use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy (grant no. DE-AC02-06CH11357). Y.X. and Liang W. thank Yandong Wang at State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, for the suggestion on material characterization and mechanism analysis, and Fang Zhang at Analysis and Testing Center, Beijing Institute of Technology, for help with aberration-corrected TEM and STEM experiments.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. and E.M. conceived the ideas and supervised the project. Liang W., J.D. and Y.X. analysed the data. Liang W. and E.M. led the writing of the paper and the presentations in the figures. Liang W., S.C., J.C. and B.W. prepared the alloys and performed the mechanical property tests and scanning electron microscopy and EBSD observations. J.D. and B.C. conducted the DFT-based Monte Carlo simulations and MD simulations. Liang W., Q.Z. and K.J. performed the aberration-corrected STEM and TEM experiments on LCO and lattice distribution. Liang W., S.Z., K.M., W.L. and J.H. performed the TEM and STEM experiments on dislocation configurations. Liang W., T.L. and Y.R. conducted the SXRD and total-scattering tests. Lu W. and J.L. reaffirmed the structure characterization and mechanical properties. G.S. performed the 3D-APT experiments. All authors contributed to the discussion of the results and commented on the manuscript.

Corresponding authors

Correspondence to Yunfei Xue or En Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Rajarshi Banerjee, E.-Wen Huang, M. Kramer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, notes 1–5 and table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ding, J., Chen, S. et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat. Mater. 22, 950–957 (2023). https://doi.org/10.1038/s41563-023-01517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01517-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing