Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Growth of single-crystal black phosphorus and its alloy films through sustained feedstock release

Abstract

Black phosphorus (BP), a fascinating semiconductor with high mobility and a tunable direct bandgap, has emerged as a candidate beyond traditional silicon-based devices for next-generation electronics and optoelectronics. The ability to grow large-scale, high-quality BP films is a prerequisite for scalable integrated applications but has thus far remained a challenge due to unmanageable nucleation events. Here we develop a sustained feedstock release strategy to achieve subcentimetre-size single-crystal BP films by facilitating the lateral growth mode under a low nucleation rate. The as-grown single-crystal BP films exhibit high crystal quality, which brings excellent field-effect electrical properties and observation of pronounced Shubnikov–de Haas oscillations, with high mobilities up to ~6,500 cm2 V−1 s−1 at low temperatures. We further extend this approach to the growth of single-crystal BP alloy films, which broaden the infrared emission regime of BP from 3.7 μm to 6.9 μm at room temperature. This work will greatly facilitate the development of high-performance electronics and optoelectronics based on BP family materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of SCBP film by a sustained feedstock release strategy.
Fig. 2: Atomic microstructure of the as-grown SCBP films.
Fig. 3: Theoretical exploration of the SCBP film growth mechanism.
Fig. 4: Electrical performance and SdH quantum oscillations of the SCBP films.
Fig. 5: Growth of b-AsxP1−x alloy single-crystal films through a sustained feedstock release strategy.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this paper and its Supplementary Information files or from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  2. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  3. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  4. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  5. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article  CAS  Google Scholar 

  6. Chen, X. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017).

    Article  Google Scholar 

  7. Mao, N. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016).

    Article  CAS  Google Scholar 

  8. Castellanos-Gomez, A. Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280–4291 (2015).

    Article  CAS  Google Scholar 

  9. Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    Article  CAS  Google Scholar 

  10. Li, J. et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 21, 740–747 (2022).

    Article  CAS  Google Scholar 

  11. Li, T. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  Google Scholar 

  12. Shriber, P., Samanta, A., Nessim, G. D. & Grinberg, I. First-principles investigation of black phosphorus synthesis. J. Phys. Chem. Lett. 9, 1759–1764 (2018).

    Article  CAS  Google Scholar 

  13. Endo, S., Akahama, Y., Terada, S. & Narita, S. Growth of large single crystals of black phosphorus under high pressure. Jpn. J. Appl. Phys. 21, L482–L484 (1982).

    Article  CAS  Google Scholar 

  14. Li, C. et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30, 1703748 (2018).

    Article  Google Scholar 

  15. Wu, Z. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. https://doi.org/10.1038/s41563-021-01001-7 (2021).

  16. Nilges, T., Kersting, M. & Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181, 1707–1711 (2008).

    Article  CAS  Google Scholar 

  17. Liu, M. et al. High yield growth and doping of black phosphorus with tunable electronic properties. Mater. Today 36, 91–101 (2020).

    Article  CAS  Google Scholar 

  18. Xu, Y. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 11, 1330 (2020).

    Article  CAS  Google Scholar 

  19. Cantwell, B. J., Brinkman, A. W. & Basu, A. Control of mass transport in the vapour growth of bulk crystals of CdTe and related compounds. J. Cryst. Growth 275, e543–e547 (2005).

    Article  CAS  Google Scholar 

  20. Hao, Y. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 11, 426–431 (2016).

    Article  CAS  Google Scholar 

  21. Han, D. et al. Synthesis of highly crystalline black phosphorus thin films on GaN. Nanoscale 12, 24429–24436 (2020).

    Article  CAS  Google Scholar 

  22. Zhang, Z. et al. Two-step heating synthesis of sub-3 millimeter-sized orthorhombic black phosphorus single crystal by chemical vapor transport reaction method. Sci. China Mater. 59, 122–134 (2016).

    Article  CAS  Google Scholar 

  23. Li, J. et al. Growth of black phosphorus nanobelts and microbelts. Small 14, 1702501 (2018).

    Article  Google Scholar 

  24. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  Google Scholar 

  25. Chen, C. et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 6, eaay6134 (2020).

    Article  CAS  Google Scholar 

  26. Izquierdo, N., Myers, J. C., Seaton, N. C. A., Pandey, S. K. & Campbell, S. A. Thin-film deposition of surface passivated black phosphorus. ACS Nano 13, 7091–7099 (2019).

    Article  CAS  Google Scholar 

  27. Li, X. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 031002 (2015).

    Article  Google Scholar 

  28. Feng, X. et al. High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater. 28, 1801524 (2018).

    Article  Google Scholar 

  29. Yan, X., Wang, H. & Sanchez Esqueda, I. Temperature-dependent transport in ultrathin black phosphorus field-effect transistors. Nano Lett. 19, 482–487 (2019).

    Article  CAS  Google Scholar 

  30. He, D. et al. High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 19, 331–337 (2019).

    Article  CAS  Google Scholar 

  31. Li, L., Engel, M., Farmer, D. B., Han, S. & Wong, H.-S. P. High-performance p-type black phosphorus transistor with scandium contact. ACS Nano 10, 4672–4677 (2016).

    Article  CAS  Google Scholar 

  32. Yang, Z. et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015).

    Article  CAS  Google Scholar 

  33. Liu, B. et al. Black arsenic–phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015).

    Article  CAS  Google Scholar 

  34. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

    Article  Google Scholar 

  35. Young, E. P. et al. Wafer-scale black arsenic–phosphorus thin-film synthesis validated with density functional perturbation theory predictions. ACS Appl. Nano Mater. 1, 4737–4745 (2018).

    Article  CAS  Google Scholar 

  36. Izquierdo, N. et al. Growth of black arsenic phosphorus thin films and its application for field-effect transistors. Nanotechnology 32, 325601 (2021).

    Article  CAS  Google Scholar 

  37. Chen, Z. et al. Spectroscopy of buried states in black phosphorus with surface doping. 2D Mater. 7, 035027 (2020).

    Article  CAS  Google Scholar 

  38. Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    Article  CAS  Google Scholar 

  39. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  Google Scholar 

  40. Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  45. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0703700 to J.H.; 2021YFA1200804 to K.Z.), the National Natural Science Foundation of China (61927813, 61922082 and 61875223 to K.Z.; 62274175 to J.W.; 12274276 to H.Z.; 52221001, 62090035 and U19A2090 to A.P.; 22173031 to Q.H.Y.), the Jiangsu Province Key R&D Program (BE2021007-3 to K.Z.) and the Key Program of Science and Technology Department of Hunan Province (2019XK2001 and 2020XK2001 to A.P.). The authors gratefully acknowledge the support from the Vacuum Interconnected Nanotech Workstation (Nano-X) of the Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences. We also thank X. Song for analysing the EBSD measurement results and S. Xiao for performing the ARPES measurement.

Author information

Authors and Affiliations

Authors

Contributions

K.Z., A.P. and C.C. conceived and designed the study. K.Z., A.P. and J.H. supervised the project. C.C. developed the synthesis technique and grew the SCBP films. C.C., Y.Z., J.C., C.L., J.L., L.F., Q.Y., H.Z., Z.Z., R.C., X.X. and Z.D. performed the measurements and analyses, including AFM, X-ray diffraction, Raman spectroscopy, PL measurement, TEM, STEM, XPS, FTIR spectroscopy and ARPES. Q.Y. and Y.Y. conducted theoretical calculations. Y.X., R.Z., J.W. and Y.Z. fabricated and measured the electrical devices. C.C., K.Z., A.P. Q.Y. and J.H. co-wrote the manuscript. All of the authors commented on the manuscript.

Corresponding authors

Correspondence to Anlian Pan, Kai Zhang or Jun He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–15 and Table 1.

Source data

Source Data Fig. 1

Statistical source data of nucleation density and XRD.

Source Data Fig. 2

Statistical source data of angle counts.

Source Data Fig. 3

Statistical source data of DFT.

Source Data Fig. 4

Statistical source data of electronic properties.

Source Data Fig. 5

Statistical source data of alloy bandgap.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yin, Y., Zhang, R. et al. Growth of single-crystal black phosphorus and its alloy films through sustained feedstock release. Nat. Mater. 22, 717–724 (2023). https://doi.org/10.1038/s41563-023-01516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01516-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing