Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Lessons from hafnium dioxide-based ferroelectrics

Abstract

A bit more than a decade after the first report of ferroelectric switching in hafnium dioxide-based ultrathin layers, this family of materials continues to elicit interest. There is ample consensus that the observed switching does not obey the same mechanisms present in most other ferroelectrics, but its exact nature is still under debate. Next to this fundamental relevance, a large research effort is dedicated to optimizing the use of this extraordinary material, which already shows direct integrability in current semiconductor chips and potential for scalability to the smallest node architectures, in smaller and more reliable devices. Here we present a perspective on how, despite our incomplete understanding and remaining device endurance issues, the lessons learned from hafnium dioxide-based ferroelectrics offer interesting avenues beyond ferroelectric random-access memories and field-effect transistors. We hope that research along these other directions will stimulate discoveries that, in turn, will mitigate some of the current issues. Extending the scope of available systems will eventually enable the way to low-power electronics, self-powered devices and energy-efficient information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main differences between Hf-FEs and classical ferroelectrics.
Fig. 2: Ionic migration and electrochemistry-driven ferroelectricity.
Fig. 3: Is the polar phase of HfO2 an adaptive phase?

Similar content being viewed by others

References

  1. Buck, D. A. Ferroelectrics for Digital Information Storage and Switching. PhD thesis, MIT (1952); https://dome.mit.edu/bitstream/handle/1721.3/40244/MC665_r12_R-212.pdf?sequence=1

  2. Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).

    Article  CAS  Google Scholar 

  3. Gruverman, A. & Kalinin, A. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J. Mater. Sci. 41, 107–116 (2006).

    Article  CAS  Google Scholar 

  4. Paruch, P., Giamarchi, T. & Triscone, J.-M. Nanoscale Studies of Domain Wallsin Epitaxial Ferroelectric Thin Films 339–362 (Springer, 2007); https://doi.org/10.1007/978-3-540-34591-6_8

  5. Hytch, M., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  CAS  Google Scholar 

  6. Jia, C. L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

    Article  CAS  Google Scholar 

  7. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  8. Naumov, I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  9. Dawber, M., Rabe, K. & Scott, J. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  10. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    Article  CAS  Google Scholar 

  11. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  12. McQuaid, R. G. P., McGilly, L. J., Sharma, P., Gruverman, A. & Gregg, J. M. Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat. Commun. 2, 404 (2011).

    Article  CAS  Google Scholar 

  13. Xu, G. et al. Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl. Phys. Lett. 86, 182905 (2005).

    Article  Google Scholar 

  14. Catalan, G. et al. Polar domains in lead titanate films under tensile strain. Phys. Rev. Lett. 96, 127602 (2006).

    Article  CAS  Google Scholar 

  15. Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  CAS  Google Scholar 

  16. Noheda, B. et al. Polarization rotation via a monoclinic phase in the piezoelectric 92%(PbZn1/3Nb2/3O3)-8%(PbTiO3). Phys. Rev. Lett. 86, 3891–3894 (2001).

    Article  CAS  Google Scholar 

  17. Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive mems. Science 334, 958–961 (2011).

    Article  CAS  Google Scholar 

  18. Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  Google Scholar 

  19. James, D. High-k/metal gates in the 2010s. In 25th Annual SEMI Advanced Semiconductor Manufacturing Conference 431–438 (IEEE, 2014).

  20. Schroeder, U., Hwang, C. S. & Funakubo, H. Ferroelectricity in Doped Hafnium Oxide Materials, Properties and Devices (Woodhead Publishing, 2019).

  21. Delodovici, F., Barone, P. & Picozzi, S. Trilinear-coupling-driven ferroelectricity in HfO2. Phys. Rev. Mater. 5, 064405 (2021).

    Article  CAS  Google Scholar 

  22. Schroeder, U. et al. Temperature-dependent phase transitions in (Hf,Zr)O2 mixed oxides: indications of a proper ferroelectric material. Adv. Electron. Mater. 8, 2200265 (2022).

    Article  CAS  Google Scholar 

  23. Glinchuk, M. D. et al. Possible electrochemical origin of ferroelectricity in HfO2 thin films. J. Alloys Compd. 830, 153628 (2020).

    Article  CAS  Google Scholar 

  24. Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).

    Article  CAS  Google Scholar 

  25. Pal, A., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. Enhancing ferroelectricity in dopant-free hafnium oxide. Appl. Phys. Lett. 110, 022903 (2017).

    Article  Google Scholar 

  26. Wei, Y. et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17, 1095–1100 (2018).

    Article  CAS  Google Scholar 

  27. Rushchanskii, K. Z., Blügel, S. & Ležaić, M. Ordering of oxygen vacancies and related ferroelectric properties in HfO2−δ. Phys. Rev. Lett. 127, 087602 (2021).

    Article  CAS  Google Scholar 

  28. El Boutaybi, A., Maroutian, T., Largeau, L., Matzen, S. & Lecoeur, P. Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO2 by surface energy. Phys. Rev. Mater. 6, 074406 (2022).

    Article  CAS  Google Scholar 

  29. Lenzi, V. et al. Ferroelectricity induced by oxygen vacancies in rhombohedral ZrO2 thin films. Energy Environ. Mater. https://doi.org/10.1002/eem2.12500 (2023).

  30. Xu, X. et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2. Nat. Mater. 20, 826–832 (2021).

    Article  CAS  Google Scholar 

  31. Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO2 from first principles. Phys. Rev. B 90, 140103 (2014). http://arxiv.org/pdf/1403.3878

    Article  Google Scholar 

  32. Lee, H.-J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 369, 1343–1347 (2020).

    Article  CAS  Google Scholar 

  33. Hoffmann, M., Fengler, F. & Herzig, Mea Unveiling the double-well energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).

    Article  CAS  Google Scholar 

  34. Stolichnov, I. et al. Intrinsic or nucleation-driven switching: an insight from nanoscopic analysis of negative capacitance Hf1−xZrxO2-based structures. Appl. Phys. Lett. 117, 172902 (2020).

    Article  CAS  Google Scholar 

  35. Lin, B.-T., Lu, Y.-W. & Chen, M.-J. Induction of ferroelectricity in nanoscale ZrO2 thin films on Pt electrode without post-annealing. J. Eur. Ceram. Soc. 37, 1135–1139 (2017).

    Article  CAS  Google Scholar 

  36. Lee, C., Ghosez, P. & Gonze, X. Lattice dynamics and dielectric properties of incipient ferroelectric TiO2 rutile. Phys. Rev. B 50, 13379–13387 (1994).

    Article  CAS  Google Scholar 

  37. Grünebohm, A., Entel, P. & Ederer, C. First-principles investigation of incipient ferroelectric trends of rutile TiO2 in bulk and at the (110) surface. Phys. Rev. B 87, 054110 (2013).

    Article  Google Scholar 

  38. Gich, M. et al. Multiferroic iron oxide thin films at room temperature. Adv. Mater. 26, 4645–4652 (2014).

    Article  CAS  Google Scholar 

  39. Mimura, T., Shimizu, T. & Funakubo, H. Ferroelectricity in YO1.5-HfO2 films around 1μm in thickness. Appl. Phys. Lett. 115, 032901 (2019).

    Article  Google Scholar 

  40. Wei, Y. et al. Magnetic tunnel junctions based on ferroelectric Hf0.5Zr0.5O2 tunnel barriers. Phys. Rev. Appl. 12, 031001 (2019).

    Article  CAS  Google Scholar 

  41. Sulzbach, M. C. et al. Unraveling ferroelectric polarization and ionic contributions to electroresistance in epitaxial Hf0.5Zr0.5O2 tunnel junctions. Adv. Electron. Mater. 6, 1900852 (2020).

    Article  CAS  Google Scholar 

  42. Cheema, S. S. et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022).

    Article  CAS  Google Scholar 

  43. Mezzadri, F. et al. Crystal structure and ferroelectric properties of ϵ-Ga2O3 films grown on (0001)-sapphire. Inorg. Chem. 55, 12079–12084 (2016).

    Article  Google Scholar 

  44. Clark, R. D. Emerging applications for high-k materials in VLSI technology. Materials 7, 2913–2944 (2014).

    Article  Google Scholar 

  45. Buragohain, P. et al. Effect of film microstructure on domain nucleation and intrinsic switching in ferroelectric Y:HfO2 thin film capacitors. Adv. Funct. Mater. 32, 2108876 (2022).

    Article  CAS  Google Scholar 

  46. Müller, J. et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).

    Article  Google Scholar 

  47. Yun, Y. et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat. Mater. 21, 903–909 (2022).

    Article  CAS  Google Scholar 

  48. Lübben, M., Wiefels, S., Waser, R. & Valov, I. Processes and effects of oxygen and moisture in resistively switching TaOx and HfOx. Adv. Electron. Mater. 4, 1700458 (2018).

    Article  Google Scholar 

  49. Goux, L. et al. Roles and effects of TiN and Pt electrodes in resistive-switching HfO2 systems. Electrochem. Solid State Lett. 14, H244–H246 (2011).

    Article  CAS  Google Scholar 

  50. Vladislav, K., Yaramchenko, A., Navmovich, E. & Fernando, M. Research on the electrochemistry of oxygen ion conductors in the former soviet union. J. Solid State Electrochem. 4, 243–266 (2000).

    Article  Google Scholar 

  51. Rushchanskii, K., Blugel, S. & Lezaic, M. Ab initio phase diagrams of Hf-O, Zr-O and Y-O: a comparative study. Faraday Discuss. 213, 321–337 (2019).

    Article  CAS  Google Scholar 

  52. Patil, R. N. & Subbarao, E. C. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400°C. J. Appl. Crystallogr. 2, 281–288 (1969).

    Article  CAS  Google Scholar 

  53. Lai, A., Du, Z., Gan, C. L. & Schuh, C. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    Article  CAS  Google Scholar 

  54. Khachaturyan, A. G., Shapiro, S. M. & Semenovskaya, S. Adaptive phase formation in martensitic transformation. Phys. Rev. B 43, 10832–10843 (1991).

    Article  CAS  Google Scholar 

  55. Wang, Y. U. Diffraction theory of nanotwin superlattices with low symmetry phase. Phys. Rev. B 74, 104109 (2006).

    Article  Google Scholar 

  56. Jin, Y. M., Wang, Y. U., Khachaturyan, A. G., Li, J. F. & Viehland, D. Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91, 197601 (2003).

    Article  CAS  Google Scholar 

  57. Korobko, R. et al. Giant electrostriction in Gd-doped ceria. Adv. Mater. 24, 5857–5861 (2012).

    Article  CAS  Google Scholar 

  58. Santucci, S., Zhang, H., Sanna, S., Pryds, N. & Esposito, V. Enhanced electro-mechanical coupling of TiN/Ce0.8Gd0.2O1.9 thin film electrostrictor. APL Mater. 7, 071104 (2019).

    Article  Google Scholar 

  59. Yu, J. & Pierre-Eymeric, J. Defining giant electrostrictors. J. Appl. Phys. 131, 170701 (2022).

    Article  CAS  Google Scholar 

  60. Park, D. et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 375, 653–657 (2022).

    Article  CAS  Google Scholar 

  61. Kelley, K. P. et al. Oxygen vacancy injection as a pathway to enhancing electromechanical response in ferroelectrics. Adv. Mater. 34, 2106426 (2022).

    Article  CAS  Google Scholar 

  62. Park, M. H. et al. Morphotropic phase boundary of Hf1−xZrxO2 thin films for dynamic random access memories. ACS Appl. Mater. Interfaces 10, 42666–42673 (2018).

    Article  CAS  Google Scholar 

  63. Kirbach, S., Kühnel, K. & Weinreich, W. Piezoelectric hafnium oxide thin films for energy-harvesting applications. In 2018 IEEE 18th International Conference on Nanotechnology 1–4 (IEEE, 2018).

  64. Dutta, S. et al. Piezoelectricity in hafnia. Nat. Commun. 12, 7301 (2021).

    Article  CAS  Google Scholar 

  65. Dreyer, C. E., Janotti, A., Van de Walle, C. G. & Vanderbilt, D. Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides. Phys. Rev. X 6, 021038 (2016).

    Google Scholar 

  66. Konishi, A. et al. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films. Appl. Phys. Lett. 109, 102903 (2016).

    Article  Google Scholar 

  67. Akiyama, M. et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 21, 593–596 (2009).

    Article  CAS  Google Scholar 

  68. Akiyama, M., Kano, K. & Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 95, 162107 (2009).

    Article  Google Scholar 

  69. Matloub, R. et al. Piezoelectric Al1−xScxN thin films: a semiconductor compatible solution for mechanical energy harvesting and sensors. Appl. Phys. Lett. 102, 152903 (2013).

    Article  Google Scholar 

  70. Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III–V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Article  Google Scholar 

  71. Zhu, W. et al. Wake-up in Al1−xBxN ferroelectric films. Adv. Electron. Mater. 8, 2100931 (2021).

    Article  Google Scholar 

  72. Ferri, K. et al. Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130, 044101 (2021).

    Article  CAS  Google Scholar 

  73. Kooi, B. J. & Noheda, B. Ferroelectric chalcogenides: materials at the edge. Science 353, 221–222 (2016).

    Article  CAS  Google Scholar 

  74. Starschich, S., Griesche, D., Schneller, D. & Böttger, U. Chemical solution deposition of ferroelectric hafnium oxide for future lead free ferroelectric devices. ECS J. Solid State Sci. Technol 4, 419–423 (2015).

    Article  Google Scholar 

  75. Nakayama, S., Funakubo, H. & Uchida, H. Crystallization behavior and ferroelectric property of HfO2–ZrO2 films fabricated by chemical solution deposition. Jpn J. Appl. Phys. 57, 4–9 (2022).

    Google Scholar 

  76. Schenk, T. et al. Toward thick piezoelectric HfO2-based films. Phys. Status Solidi Rapid Res. Lett. 14, 1900626 (2020).

    Article  CAS  Google Scholar 

  77. Badillo, M. et al. Low-toxicity chemical solution deposition of ferroelectric Ca:HfO2. J. Mater. Chem. C 11, 1119–1133 (2023).

    Article  CAS  Google Scholar 

  78. Starschich, S. & Böttger, U. An extensive study of the influence of dopants on the ferroelectric properties of HfO2. J. Mater. Chem. C 5, 333–338 (2017).

    Article  CAS  Google Scholar 

  79. Batra, R., Huan, T., Rossetti, G. & Ramprasad, R. Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration. Chem. Mater. 29, 9102–9109 (2017).

    Article  CAS  Google Scholar 

  80. Yao, Y. et al. Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. J. Appl. Phys. 126, 154103–1,8 (2019).

    Article  Google Scholar 

  81. Guo, J. et al. Cold sintering: progress, challenges, and future opportunities. Annu. Rev. Mater. Res. 49, 275–295 (2019).

    Article  CAS  Google Scholar 

  82. Kwon, D. et al. Negative capacitance FET with 1.8-nm-thick Zr-doped HfO2 oxide. IEEE Electron Device Lett. 40, 992–996 (2019).

    Article  Google Scholar 

  83. Mikolajic, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    Article  Google Scholar 

  84. Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

    Article  CAS  Google Scholar 

  85. Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    Article  CAS  Google Scholar 

  86. Di Ventra, M. & Pershin, Y. V. On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology 24, 255201 (2013).

    Article  Google Scholar 

  87. Boni, G. A. et al. Memcomputing and nondestructive reading in functional ferroelectric heterostructures. Phys. Rev. Appl. 12, 024053 (2019).

    Article  CAS  Google Scholar 

  88. Ali, F. et al. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 122, 144105 (2017).

    Article  Google Scholar 

  89. Kim, K. D. et al. Scale-up and optimization of HfO2–ZrO2 solid solution thin films for the electrostatic supercapacitors. Nano Energy 39, 390–399 (2017).

    Article  CAS  Google Scholar 

  90. Silva, J. P. B. et al. Energy storage performance of ferroelectric ZrO2 film capacitors: effect of HfO2:Al2O3 dielectric insert layer. J. Mater. Chem. A 8, 14171–14177 (2020).

    Article  CAS  Google Scholar 

  91. Mart, C. et al. Energy harvesting in the back-end of line with CMOS compatible ferroelectric hafnium oxide. In 2020 IEEE International Electron Devices Meeting 26.3.1–26.3.4 (IEEE, 2020).

  92. Hoffmann, M. et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J. App. Phys. 118, 072006 (2015).

    Article  Google Scholar 

  93. Sang, X., Grimley, E. D., Schenk, T., Schroeder, U. & LeBeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106, 162905 (2015).

    Article  Google Scholar 

  94. Tobase, T. et al. Pre-transitional behavior in tetragonal to cubic phase transition in HfO2 revealed by high temperature diffraction experiments. Phys. Status Solidi B 255, 1800090 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Ubbo Emmius Funds (University of Groningen). P.N. acknowledges help from J. NK in preparing Fig. 2 for this paper. SERB and IISc start up grants are also acknowledged by P.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Noheda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Florencio Sánchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noheda, B., Nukala, P. & Acuautla, M. Lessons from hafnium dioxide-based ferroelectrics. Nat. Mater. 22, 562–569 (2023). https://doi.org/10.1038/s41563-023-01507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01507-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing