Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coherent antiferromagnetic spintronics

Abstract

Antiferromagnets have attracted extensive interest as a material platform in spintronics. So far, antiferromagnet-enabled spin–orbitronics, spin-transfer electronics and spin caloritronics have formed the bases of antiferromagnetic spintronics. Spin transport and manipulation based on coherent antiferromagnetic dynamics have recently emerged, pushing the developing field of antiferromagnetic spintronics towards a new stage distinguished by the features of spin coherence. In this Review, we categorize and analyse the critical effects that harness the coherence of antiferromagnets for spintronic applications, including spin pumping from monochromatic antiferromagnetic magnons, spin transmission via phase-correlated antiferromagnetic magnons, electrically induced spin rotation and ultrafast spin–orbit effects in antiferromagnets. We also discuss future opportunities in research and applications stimulated by the principles, materials and phenomena of coherent antiferromagnetic spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of magnon eigenmodes (uniform modes with zero wavenumber) in collinear antiferromagnets.
Fig. 2: Spin pumping from sub-terahertz AFM magnons.
Fig. 3: Spin transmission via phase-correlated AFM magnons and magnon pseudospin dynamics in easy-plane α-Fe2O3.
Fig. 4: SOT-driven coherent chiral-spin rotation in non-collinear antiferromagnet Mn3Sn.
Fig. 5: Ultrafast SOT switching and spin current generation in antiferromagnets.

Similar content being viewed by others

References

  1. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article  Google Scholar 

  2. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  3. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article  CAS  Google Scholar 

  4. Huai, Y., Albert, F., Nguyen, P., Pakala, M. & Valet, T. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004).

    Article  CAS  Google Scholar 

  5. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  6. Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article  Google Scholar 

  7. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  8. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  9. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article  CAS  Google Scholar 

  10. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  CAS  Google Scholar 

  11. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  Google Scholar 

  12. DuttaGupta, S. et al. Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nat. Commun. 11, 5715 (2020).

    Article  CAS  Google Scholar 

  13. DuttaGupta, S., Itoh, R., Fukami, S. & Ohno, H. Angle dependent magnetoresistance in heterostructures with antiferromagnetic and non-magnetic metals. Appl. Phys. Lett. 113, 202404 (2018).

    Article  Google Scholar 

  14. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article  CAS  Google Scholar 

  15. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article  CAS  Google Scholar 

  16. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article  CAS  Google Scholar 

  17. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).

    Article  CAS  Google Scholar 

  18. Qiu, Z. et al. Spin colossal magnetoresistance in an antiferromagnetic insulator. Nat. Mater. 17, 577–580 (2018).

    Article  CAS  Google Scholar 

  19. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article  CAS  Google Scholar 

  20. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

    Article  Google Scholar 

  21. Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952).

    Article  CAS  Google Scholar 

  22. Sievers, A. J. III & Tinkham, M. Far infrared antiferromagnetic resonance in MnO and NiO. Phys. Rev. 129, 1566–1571 (1963).

    Article  CAS  Google Scholar 

  23. Williamson, S. J. & Foner, S. Antiferromagnetic resonance in systems with Dzyaloshinsky-Moriya coupling; orientation dependence in αFe2O3. Phys. Rev. 136, A1102–A1106 (1964).

    Article  Google Scholar 

  24. Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018).

    Article  CAS  Google Scholar 

  25. Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    Article  Google Scholar 

  26. Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Antiferromagnetic spin wave field-effect transistor. Sci. Rep. 6, 24223 (2016).

    Article  CAS  Google Scholar 

  27. Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–568 (2020).

    Article  CAS  Google Scholar 

  28. Lebrun, R. et al. Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3. Nat. Commun. 11, 6332 (2020).

    Article  CAS  Google Scholar 

  29. Wang, H. et al. Spin pumping of an easy-plane antiferromagnet enhanced by Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 127, 117202 (2021).

    Article  CAS  Google Scholar 

  30. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  31. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

    Article  Google Scholar 

  32. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  33. Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

    Article  CAS  Google Scholar 

  34. Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

    Article  CAS  Google Scholar 

  35. Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).

    Article  CAS  Google Scholar 

  36. Yamanoi, K., Yokotani, Y. & Kimura, T. Dynamical spin injection based on heating effect due to ferromagnetic resonance. Phys. Rev. Appl. 8, 054031 (2017).

    Article  Google Scholar 

  37. Cheng, J. et al. Quantitative estimation of thermoelectric contributions in spin pumping signals through microwave photoresistance measurements. Phys. Rev. B 103, 014415 (2021).

    Article  CAS  Google Scholar 

  38. Chen, Y. S., Lin, J. G., Huang, S. Y. & Chien, C. L. Incoherent spin pumping from YIG single crystals. Phys. Rev. B 99, 220402(R) (2019).

    Article  Google Scholar 

  39. Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Diffusive magnonic spin transport in antiferromagnetic insulators. Phys. Rev. B 93, 054412 (2016).

    Article  Google Scholar 

  40. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).

    Article  Google Scholar 

  41. Li, J. et al. Spin Seebeck effect from antiferromagnetic magnons and critical spin fluctuations in epitaxial FeF2 films. Phys. Rev. Lett. 122, 217204 (2019).

    Article  CAS  Google Scholar 

  42. Gray, I. et al. Spin Seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructure. Phys. Rev. X 9, 041016 (2019).

    CAS  Google Scholar 

  43. Kefer, F., Kaplan, H. & Yafet, Y. Spin waves in ferromagnetic and antiferromagnetic materials. Am. J. Phys. 21, 250–257 (1953).

    Article  Google Scholar 

  44. Boventer, I. et al. Room-temperature antiferromagnetic resonance and inverse spin-Hall voltage in canted antiferromagnets. Phys. Rev. Lett. 126, 187201 (2021).

    Article  CAS  Google Scholar 

  45. Gomonay, O., Jungwirth, T. & Sinova, J. Narrow-band tunable terahertz detector in antiferromagnets via staggered-field and antidamping torques. Phys. Rev. B 98, 104430 (2018).

    Article  CAS  Google Scholar 

  46. Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N. & Ivanov, B. A. Transformation of spin current by antiferromagnetic insulators. Phys. Rev. B 93, 224421 (2016).

    Article  Google Scholar 

  47. Ross, A. et al. An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit. Appl. Phys. Lett. 117, 242405 (2020).

    Article  CAS  Google Scholar 

  48. Bender, S. A. & Tserkovnyak, Y. Interfacial spin and heat transfer between metals and magnetic insulators. Phys. Rev. B 91, 140402(R) (2015).

    Article  Google Scholar 

  49. Guo, E.-J. et al. Influence of thickness and interface on the low-temperature enhancement of the spin Seebeck effect in YIG films. Phys. Rev. X 6, 031012 (2016).

    Google Scholar 

  50. Cornelissen, L. J., Shan, J. & van Wees, B. J. Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet. Phys. Rev. B 94, 180402(R) (2016).

    Article  Google Scholar 

  51. Zhou, X. J. et al. Lateral transport properties of thermally excited magnons in yttrium iron garnet films. Appl. Phys. Lett. 110, 062407 (2017).

    Article  Google Scholar 

  52. Gückelhorn, J. et al. Influence of low-energy magnons on magnon Hanle experiments in easy-plane antiferromagnets. Phys. Rev. B 105, 094440 (2022).

    Article  Google Scholar 

  53. Wimmer, T. et al. Observation of antiferromagnetic magnon pseudospin dynamics and the Hanle effect. Phys. Rev. Lett. 125, 247204 (2020).

    Article  CAS  Google Scholar 

  54. Kamra, A., Wimmer, T., Huebl, H. & Althammer, M. Antiferromagnetic magnon pseudospin: dynamics and diffusive transport. Phys. Rev. B 102, 174445 (2020).

    Article  CAS  Google Scholar 

  55. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  CAS  Google Scholar 

  56. Das, S. et al. Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3. Nat. Commun. 13, 6140 (2022).

    Article  CAS  Google Scholar 

  57. Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014).

    Article  CAS  Google Scholar 

  58. Dąbrowski, M. et al. Coherent transfer of spin angular momentum by evanescent spin waves within antiferromagnetic NiO. Phys. Rev. Lett. 124, 217201 (2020).

    Article  Google Scholar 

  59. Baldrati, L. et al. Spin transport in multilayer systems with fully epitaxial NiO thin films. Phys. Rev. B 98, 014409 (2018).

    Article  CAS  Google Scholar 

  60. Boventer, I. et al. Antiferromagnetic cavity magnon polaritons in collinear and canted phases of hematite. Phys. Rev. Appl. 19, 014071 (2023).

    Article  CAS  Google Scholar 

  61. Cramer, J. et al. Magnon detection using a ferroic collinear multilayer spin valve. Nat. Commun. 9, 1089 (2018).

    Article  Google Scholar 

  62. Guo, C. Y. et al. A nonlocal spin Hall magnetoresistance in a platinum layer deposited on a magnon junction. Nat. Electron. 3, 304–308 (2020).

    Article  CAS  Google Scholar 

  63. Zhou, Y. et al. Orthogonal interlayer coupling in an all-antiferromagnetic junction. Nat. Commun. 13, 3723 (2022).

    Article  CAS  Google Scholar 

  64. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  65. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article  CAS  Google Scholar 

  66. Yan, G. Q. et al. Quantum sensing and imaging of spin‐orbit‐torque‐driven spin dynamics in noncollinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    Article  CAS  Google Scholar 

  67. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  CAS  Google Scholar 

  68. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article  Google Scholar 

  69. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  CAS  Google Scholar 

  70. Yoon, J. et al. Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films. Appl. Phys. Express 13, 013001 (2020).

    Article  CAS  Google Scholar 

  71. Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 (2019).

    Article  CAS  Google Scholar 

  72. Shukla, A. & Rakheja, S. Spin-torque-driven terahertz auto-oscillations in noncollinear coplanar antiferromagnets. Phys. Rev. Appl. 17, 034037 (2022).

    Article  CAS  Google Scholar 

  73. Dong, J. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).

    Article  CAS  Google Scholar 

  74. Moriyama, T. et al. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Article  Google Scholar 

  75. Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    Article  CAS  Google Scholar 

  76. Chiang, C. C. et al. Absence of evidence of electrical switching of the antiferromagnetic Néel vector. Phys. Rev. Lett. 123, 227203 (2019).

    Article  CAS  Google Scholar 

  77. Zhang, P. et al. Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film. Phys. Rev. Lett. 123, 247206 (2019).

    Article  CAS  Google Scholar 

  78. Zhang, P. et al. Control of Néel vector with spin-orbit torques in an antiferromagnetic insulator with tilted easy plane. Phys. Rev. Lett. 129, 017203 (2022).

    Article  CAS  Google Scholar 

  79. Chen, X. et al. Control of spin current and antiferromagnetic moments via topological surface state. Nat. Electron. 5, 574–578 (2022).

    Article  CAS  Google Scholar 

  80. Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque. Sci. Adv. 8, eabo5930 (2022).

    Article  CAS  Google Scholar 

  81. Han, J. & Liu, L. Topological insulators for efficient spin-orbit torques. APL Mater. 9, 060901 (2021).

    Article  CAS  Google Scholar 

  82. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    Article  CAS  Google Scholar 

  83. Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).

    Article  CAS  Google Scholar 

  84. Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Ultrafast switching of antiferromagnets via spin-transfer torque. Phys. Rev. B 91, 064423 (2015).

    Article  Google Scholar 

  85. Sulymenko, O. R. et al. Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017).

    Article  Google Scholar 

  86. Cheng, R., Xiao, D. & Brataas, A. Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116, 207603 (2016).

    Article  Google Scholar 

  87. Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    Article  Google Scholar 

  88. Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  Google Scholar 

  89. Roy, P. E., Otxoa, R. M. & Wunderlich, J. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields. Phys. Rev. B 94, 014439 (2016).

    Article  Google Scholar 

  90. Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Article  Google Scholar 

  91. Bedau, D. et al. Spin-transfer pulse switching: from the dynamic to the thermally activated regime. Appl. Phys. Lett. 97, 262502 (2010).

    Article  Google Scholar 

  92. Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    Article  CAS  Google Scholar 

  93. Huang, L. et al. Terahertz pulse-induced Néel vector switching in α-Fe2O3/Pt heterostructures. Appl. Phys. Lett. 119, 212401 (2021).

    Article  CAS  Google Scholar 

  94. Wadley, P. et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat. Nanotechnol. 13, 362–365 (2018).

    Article  CAS  Google Scholar 

  95. Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).

    Article  CAS  Google Scholar 

  96. Kang, K., Lee, W.-B., Lee, D.-K., Lee, K.-J. & Choi, G.-M. Magnetization dynamics of antiferromagnetic metals of PtMn and IrMn driven by a pulsed spin-transfer torque. Appl. Phys. Lett. 118, 252407 (2021).

    Article  CAS  Google Scholar 

  97. Qiu, H. et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021).

    Article  CAS  Google Scholar 

  98. Wu, W., Yaw Ameyaw, C., Doty, M. F. & Jungfleisch, M. B. Principles of spintronic THz emitters. J. Appl. Phys. 130, 091101 (2021).

    Article  CAS  Google Scholar 

  99. Rongione, E. et al. Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin-phonon interactions. Preprint at https://arxiv.org/abs/2205.11965 (2022).

  100. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    Article  CAS  Google Scholar 

  101. Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

    Article  CAS  Google Scholar 

  102. Uchimura, T. et al. Observation of domain structure in non-collinear antiferromagnetic Mn3Sn thin films by magneto-optical Kerr effect. Appl. Phys. Lett. 120, 172405 (2022).

    Article  CAS  Google Scholar 

  103. Ross, A. et al. Propagation length of antiferromagnetic magnons governed by domain configurations. Nano Lett. 20, 306–313 (2020).

    Article  CAS  Google Scholar 

  104. Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

    Article  CAS  Google Scholar 

  105. Lee, K. et al. Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances. Nat. Nanotechnol. 16, 1337–1341 (2021).

    Article  CAS  Google Scholar 

  106. Wang, J.-L., Echtenkamp, W., Mahmood, A. & Binek, C. Voltage controlled magnetism in Cr2O3 based all-thin-film systems. J. Magn. Magn. Mater. 486, 165262 (2019).

    Article  CAS  Google Scholar 

  107. Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotechnol. 14, 131–136 (2019).

    Article  CAS  Google Scholar 

  108. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    Article  CAS  Google Scholar 

  109. Narang, P., Garcia, C. A. C. & Felser, C. The topology of electronic band structures. Nat. Mater. 20, 293–300 (2021).

    Article  CAS  Google Scholar 

  110. Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat. Electron. 3, 680–686 (2020).

    Article  Google Scholar 

  111. Takei, S. & Tserkovnyak, Y. Superfluid spin transport through easy-plane ferromagnetic insulators. Phys. Rev. Lett. 112, 227201 (2014).

    Article  Google Scholar 

  112. Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity and long-range transport in thin-film ferromagnets. Phys. Rev. Lett. 115, 237201 (2015).

    Article  Google Scholar 

  113. Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017).

    Article  Google Scholar 

  114. Li, B. & Kovalev, A. A. Spin superfluidity in noncollinear antiferromagnets. Phys. Rev. B 103, L060406 (2021).

    Article  CAS  Google Scholar 

  115. Goli, V. M. L. D. P. & Manchon, A. Crossover from diffusive to superfluid transport in frustrated magnets. Phys. Rev. B 103, 104425 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.F. acknowledges funding from JSPS Kakenhi grant numbers 19H05622 and 22F32037, MEXT Initiative to Establish Next-generation Novel Integrated Circuits Centers (X-NICS) grant number JPJ011438 and the Cooperative Research Projects of the RIEC. R.C. is supported by the US Air Force Office of Scientific Research grant number FA9550-19-1-0307. L.L. acknowledges support from the US National Science Foundation grant number DMR-2104912. J.H. acknowledges support from the JSPS Postdoctoral Fellowship for Research in Japan.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and S.F. proposed the topic and main aspects of the paper. All authors participated in writing and discussions.

Corresponding authors

Correspondence to Jiahao Han or Shunsuke Fukami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Romain Lebrun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Cheng, R., Liu, L. et al. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023). https://doi.org/10.1038/s41563-023-01492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01492-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing