Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible

Abstract

Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photograph of mass-produced metalenses.
Fig. 2: Conversion efficiencies of high-index meta-atoms.
Fig. 3: Mass production of high-efficiency visible metalenses using an ArF immersion scanner.
Fig. 4: Optical characterization of the fabricated metalenses.
Fig. 5: Metalens-integrated virtual information imaging.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012).

    Article  Google Scholar 

  2. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  CAS  Google Scholar 

  3. Chen, K. et al. A reconfigurable active Huygens’ metalens. Adv. Mater. 29, 1606422 (2017).

    Article  Google Scholar 

  4. Schlickriede, C. et al. Imaging through nonlinear metalens using second harmonic generation. Adv. Mater. 30, 1703843 (2018).

    Article  Google Scholar 

  5. Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).

    Article  CAS  Google Scholar 

  6. Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photon. 14, 316–323 (2020).

    Article  CAS  Google Scholar 

  7. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).

    Article  Google Scholar 

  8. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  CAS  Google Scholar 

  9. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  CAS  Google Scholar 

  10. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    Article  CAS  Google Scholar 

  11. Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    Article  Google Scholar 

  12. Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    Article  CAS  Google Scholar 

  13. Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    Article  CAS  Google Scholar 

  14. Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11, 1991 (2020).

    Article  CAS  Google Scholar 

  15. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018).

    Article  CAS  Google Scholar 

  16. Tao, J. et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless broadcasting communications. Adv. Mater. 34, 2106080 (2022).

    Article  CAS  Google Scholar 

  17. Leitis, A., Tseng, M. L., John-Herpin, A., Kivshar, Y. S. & Altug, H. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv. Mater. 33, 2102232 (2021).

    Article  CAS  Google Scholar 

  18. Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).

    Article  CAS  Google Scholar 

  19. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    Article  CAS  Google Scholar 

  20. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  21. Schmid, H. & Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000).

    Article  CAS  Google Scholar 

  22. Shen, F. & Wang, A. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl. Opt. 45, 1102–1110 (2006).

    Article  Google Scholar 

  23. Engelberg, J. & Levy, U. Standardizing flat lens characterization. Nat. Photon. 16, 171–173 (2022).

    Article  CAS  Google Scholar 

  24. Engelberg, J. & Levy, U. Generalized metric for broadband flat lens performance comparison. Nanophotonics 11, 3559–3574 (2022).

  25. Yang, Y. et al. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Adv. Mater. 33, 2005893 (2021).

    Article  CAS  Google Scholar 

  26. Goodman, J. W. Introduction to Fourier Optics (McGraw-Hill, 1996).

  27. Song, J.-H., van de Groep, J., Kim, S. J. & Brongersma, M. L. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat. Nanotechnol. 16, 1224–1230 (2021).

    Article  CAS  Google Scholar 

  28. Faisal, A. Computer science: visionary of virtual reality. Nature 551, 298–299 (2017).

    Article  CAS  Google Scholar 

  29. Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article  CAS  Google Scholar 

  30. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article  Google Scholar 

  31. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    Article  CAS  Google Scholar 

  32. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    Article  CAS  Google Scholar 

  33. Ruan, Q. et al. Reconfiguring colors of single relief structures by directional stretching. Adv. Mater. 34, 2108128 (2022).

    Article  CAS  Google Scholar 

  34. Liu, H. et al. Tunable resonator-upconverted emission (TRUE) color printing and applications in optical security. Adv. Mater. 31, 1807900 (2019).

    Article  Google Scholar 

  35. Badloe, T. et al. Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light Sci. Appl. 11, 118 (2022).

  36. Jang, J. et al. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano 14, 15317–15326 (2020).

    Article  CAS  Google Scholar 

  37. Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photon. 14, 102–108 (2020).

    Article  CAS  Google Scholar 

  38. Kim, J. et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano 16, 3546–3553 (2022).

    Article  CAS  Google Scholar 

  39. Bao, Y., Wen, L., Chen, Q., Qiu, C.-W. & Li, B. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci. Adv. 7, eabh0365 (2021).

    Article  Google Scholar 

  40. Kim, J. et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev. 16, 2200098 (2022).

    Article  CAS  Google Scholar 

  41. Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the POSCO-POSTECH-RIST Convergence Research Center programme funded by POSCO, the Samsung Research Funding & Incubation Center for Future Technology grant (SRFC-IT1901-52) funded by Samsung Electronics, and the National Research Foundation (NRF) grants (NRF-2022M3C1A3081312, NRF-2022M3H4A1A02074314, NRF-2022M3H4A1A02085335, NRF-2021M3H4A1A04086554, NRF-2021K2A9A2A15000174, NRF-2019R1A2C3003129, NRF-2019R1A5A8080290, CAMM-2019M3A6B3030637) funded by the Ministry of Science and ICT (MSIT) of the Korean government. H.L. acknowledges the NRF grant (NRF-2019K1A4A7A02113032) funded by the MSIT, and Technology Innovation Program (20016234) funded by the Ministry of Trade, Industry & Energy of the Korean government. J.K. and H.K. acknowledge the POSTECH Alchemist fellowships. D.K.O., Y.Y. and Y.K. acknowledge the Hyundai Motor Chung Mong-Koo fellowships. Y.Y. and Y.K. acknowledge the NRF PhD fellowships (NRF-2021R1A6A3A13038935 and NRF-2022R1A6A3A13066251, respectively) funded by the Ministry of Education of the Korean government. Y.K. acknowledges the NRF International Research & Development fellowship (NRF-2022K1A3A1A12080445) funded by the MSIT of the Korean government. The authors thank T. Badloe (POSTECH) for English proofreading and fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and H.L. conceived the idea and initiated the project. J.R. and J.K. designed the whole experiments. J.K., S.K., H.K., S.-W.M., J.P., Y.K., J.R. and N.P. performed the theoretical and numerical simulations. W.K., J.K., J.S., D.K.O., Y.Y., C.P., H.C., G.J., K.L. and D.H.Y. contributed to the master mould fabrication and nanoimprinting. J.S., J.K., J.J. and M.J. performed the experimental characterization and data analysis of the materials and devices. G.-Y.L. and B.L. supported the experimental part of VR display. J.K., J.S. and J.R. mainly wrote the manuscript. All the authors confirmed the final manuscript. J.R. guided the entire project.

Corresponding authors

Correspondence to Heon Lee or Junsuk Rho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jay Guo, Yuri Kivshar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–20.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Seong, J., Kim, W. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023). https://doi.org/10.1038/s41563-023-01485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01485-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing