Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proximity-induced superconductivity in epitaxial topological insulator/graphene/gallium heterostructures


The introduction of superconductivity to the Dirac surface states of a topological insulator leads to a topological superconductor, which may support topological quantum computing through Majorana zero modes1,2. The development of a scalable material platform is key to the realization of topological quantum computing3,4. Here we report on the growth and properties of high-quality (Bi,Sb)2Te3/graphene/gallium heterostructures. Our synthetic approach enables atomically sharp layers at both hetero-interfaces, which in turn promotes proximity-induced superconductivity that originates in the gallium film. A lithography-free, van der Waals tunnel junction is developed to perform transport tunnelling spectroscopy. We find a robust, proximity-induced superconducting gap formed in the Dirac surface states in 5–10 quintuple-layer (Bi,Sb)2Te3/graphene/gallium heterostructures. The presence of a single Abrikosov vortex, where the Majorana zero modes are expected to reside, manifests in discrete conductance changes. The present material platform opens up opportunities for understanding and harnessing the application potential of topological superconductivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epitaxial growth of BST/Gr/Ga heterostructures and fabrication of tunnel junction devices.
Fig. 2: Coexistence of Dirac surface states and superconductivity in BST/Gr/Ga heterostructures.
Fig. 3: Proximity-induced superconductivity in BST/Gr/Ga heterostructures.
Fig. 4: Evidence of vortex trapping and single vortex signature in tunnelling conductance.

Data availability

The data needed to reproduce the figures in the main text and Supplementary Information are available on Zenodo (

Code availability

The codes used in the theoretical simulations and calculations are available from the corresponding author upon reasonable request.


  1. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  2. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  CAS  Google Scholar 

  3. Shabani, J. et al. Two-dimensional epitaxial superconductor-semiconductor heterostructures: a platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016).

    Article  Google Scholar 

  4. Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid devices. Nat. Phys. 16, 718–724 (2020).

    Article  CAS  Google Scholar 

  5. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  6. Wang, M. X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

    Article  CAS  Google Scholar 

  7. Xu, J. P. et al. Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 112, 217001 (2014).

    Article  Google Scholar 

  8. Xu, J. P. et al. Experimental detection of a majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article  CAS  Google Scholar 

  9. Zang, Y. Y. et al. Competing energy scales in topological superconducting heterostructures. Nano Lett. 21, 2758–2765 (2021).

    Article  CAS  Google Scholar 

  10. Zhang, H. et al. Two-step growth of high-quality Nb/(Bi0.5Sb0.5)2Te3/Nb heterostructures for topological Josephson junctions. J. Mater. Res. 33, 2423–2433 (2018).

    Article  CAS  Google Scholar 

  11. Dai, W. Q. et al. Proximity-effect-induced superconducting gap in topological surface states – a point contact spectroscopy study of NbSe2/Bi2Se3 superconductor-topological Insulator heterostructures. Sci. Rep. 7, 7631 (2017).

    Article  Google Scholar 

  12. Williams, J. R. et al. Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 109, 056803 (2012).

    Article  CAS  Google Scholar 

  13. Kurter, C., Finck, A. D. K., Hor, Y. S. & Van Harlingen, D. J. Evidence for an anomalous current–phase relation in topological insulator Josephson junctions. Nat. Commun. 6, 7130 (2015).

    Article  CAS  Google Scholar 

  14. Kayyalha, M. et al. Anomalous low-temperature enhancement of supercurrent in topological-insulator nanoribbon Josephson junctions: evidence for low-energy Andreev bound states. Phys. Rev. Lett. 122, 047003 (2019).

    Article  CAS  Google Scholar 

  15. Briggs, N. et al. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020).

    Article  CAS  Google Scholar 

  16. El-Sherif, H. et al. Scalable characterization of 2D gallium-intercalated epitaxial graphene. ACS Appl. Mater. Inter. 13, 55428–55439 (2021).

    Article  CAS  Google Scholar 

  17. Wetherington, M. T. et al. 2-dimensional polar metals: a low-frequency Raman scattering study. 2D Mater. 8, 041003 (2021).

    Article  CAS  Google Scholar 

  18. Gregory, W. D., Sheahen, T. P. & Cochran, J. Superconducting transition and critical field of pure gallium single crystals. Phys. Rev. 150, 315–321 (1966).

    Article  CAS  Google Scholar 

  19. Zhang, J. et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011).

    Article  Google Scholar 

  20. Song, C. L. et al. Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl. Phys. Lett. 97, 143118 (2010).

    Article  Google Scholar 

  21. Chang, C. Z. et al. Band engineering of Dirac surface states in topological-insulator-based van der Waals heterostructures. Phys. Rev. Lett. 115, 136801 (2015).

    Article  Google Scholar 

  22. Li, J. et al. Superconducting proximity effect in a transparent van der Waals superconductor-metal junction. Phys. Rev. B 101, 195405 (2020).

    Article  CAS  Google Scholar 

  23. Bretheau, L. et al. Tunnelling spectroscopy of Andreev states in graphene. Nat. Phys. 13, 756–760 (2017).

    Article  CAS  Google Scholar 

  24. Cascales, J. P. et al. Band structure of topological insulators from noise measurements in tunnel junctions. Appl. Phys. Lett. 107, 252402 (2015).

    Article  Google Scholar 

  25. Knispel, T. et al. Charge puddles in the bulk and on the surface of the topological insulator BiSbTeSe2 studied by scanning tunneling microscopy and optical spectroscopy. Phys. Rev. B 96, 195135 (2017).

    Article  Google Scholar 

  26. Cyrot, M. Ginzburg-Landau theory for superconductors. Rep. Prog. Phys. 36, 103 (1973).

    Article  CAS  Google Scholar 

  27. Talantsev, E. F., Crump, W. P. & Tallon, J. L. Universal scaling of the self-field critical current in superconductors: from sub-nanometre to millimetre size. Sci. Rep. 7, 10010 (2017).

    Article  CAS  Google Scholar 

  28. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  CAS  Google Scholar 

  29. Daghero, D. & Gonnelli, R. S. Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 23, 043001 (2010).

    Article  Google Scholar 

  30. Flototto, D. et al. Superconducting pairing of topological surface states in bismuth selenide films on niobium. Sci. Adv. 4, eaar721 (2018).

    Article  Google Scholar 

  31. Suderow, H., Guillamon, I., Rodrigo, J. G. & Vieira, S. Imaging superconducting vortex cores and lattices with a scanning tunneling microscope. Supercond. Sci. Technol. 27, 063001 (2014).

    Article  CAS  Google Scholar 

  32. Dvir, T., Aprili, M., Quay, C. H. L. & Steinberg, H. Tunneling into the vortex state of NbSe2 with van der Waals junctions. Nano Lett. 18, 7845–7850 (2018).

    Article  CAS  Google Scholar 

  33. Li, H. Y. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article  CAS  Google Scholar 

Download references


C.L., H.Y., C.-Z.C., S.K., T.B., J.L.T, J.A.R., D.R.H and J.Z. are supported by the Penn State Materials Research Science and Engineering Center for Nanoscale Science (DMR-2011839). Y.-F.Z, Z.Y. and C.-Z.C. are supported by the National Science Foundation CAREER award (DMR-1847811) and Gordon and Betty Moore Foundation’s EPiQS Initiative (GBMF9063 to C.-Z.C.). C.D. and J.A.R. are supported by the Penn State National Science Foundation Materials Innovation Platforms Two-Dimensional Crystal Consortium award (DMR-1539916). A.V. and J.A.R. are supported by the National Science Foundation (DMR 2002651). O.L. and Y.O. are supported by the US–Israel Binational Science Foundation and National Science Foundation (2018643), the European Union’s Horizon 2020 research and innovation programme (grant agreement LEGOTOP no. 788715), the DFG German Research Foundation (CRC/Transregio 183, EI 519/7-1) and ISF Quantum Science and Technology (2074/19). K. Watanabe and T.T. acknowledge support from the Japan Society for the Promotion of Science KAKENHI (grant numbers 19H05790, 20H00354 and 21H05233). J.L.T. and D.R.H. thank the Penn State Eberly College of Science, Department of Chemistry and Materials Research Institute for generous support through start-up funds. The coauthors acknowledge use of the Penn State Materials Characterization Lab. We thank C.-X. Liu, R. Mei and Y. Liu for helpful discussions and R. Zhang and F. Turker for assistance in measurement.

Author information

Authors and Affiliations



C.L. and J.Z. designed the experiment. C.L. fabricated the devices and made the transport measurements under the supervision of J.Z.; Y.-F.Z., H.Y. and Z.Y. performed the MBE growth and ARPES measurements under the supervision of C.-Z.C.; A.V., S.K., C.D. and T.B. performed the CHet growth and characterizations under the supervision of J.A.R.; O.L. performed BTK modelling under the supervision of Y.O.; K. Watanabe and T.T. synthesized the h-BN crystals; K. Wang, H.W. and J.L.T. under the supervision of D.R.H. performed the focused ion beam and transmission electron microscopy measurements; C.L. and J.Z. analysed the data; and C.L. and J.Z. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Jun Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1 and 2 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, YF., Vera, A. et al. Proximity-induced superconductivity in epitaxial topological insulator/graphene/gallium heterostructures. Nat. Mater. 22, 570–575 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing