Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide


Pressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging. Here we study the optical and spin properties of implanted silicon vacancy defects in 4H-silicon carbide that exhibit single-axis and temperature-independent zero-field splitting. Using this technique, we observe the magnetic phase transition of Nd2Fe14B at about 7 GPa and map the critical temperature–pressure phase diagram of the superconductor YBa2Cu3O6.6. These results highlight the potential of silicon vacancy-based quantum sensors for in situ magnetic detection at high pressures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the SiC anvil and the optical properties of VSi defects with changing pressure.
Fig. 2: The spin properties of VSi defects at high pressures.
Fig. 3: The detection of the pressure-induced magnetic phase transition of a Nd2Fe14B magnet using shallow VSi defects.
Fig. 4: Measurement of the temperature‒pressure phase diagram of the superconductor YBa2Cu3O6.6 using implanted VSi defects.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the article and the Supplementary Information, and are available from the corresponding authors upon reasonable request. Source data are provided with this paper.


  1. Dalladay-Simpson, P., Howie, R. T. & Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529, 63–67 (2016).

    Article  CAS  Google Scholar 

  2. Hanfland, M. et al. New high-pressure phases of lithium. Nature 408, 174–178 (2000).

    Article  CAS  Google Scholar 

  3. Liu, X. D. et al. High-pressure behavior of hydrogen and deuterium at low temperatures. Phys. Rev. Lett. 119, 065301 (2017).

    Article  Google Scholar 

  4. Babaev, E., Sudbø, A. & Ashcroft, N. W. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature 431, 666–668 (2004).

    Article  CAS  Google Scholar 

  5. Gregoryanz, E. et al. Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294–297 (2004).

    Article  CAS  Google Scholar 

  6. Drozdov, A. P. et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Article  CAS  Google Scholar 

  7. Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    Article  CAS  Google Scholar 

  8. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article  CAS  Google Scholar 

  9. Doherty, M. W. et al. Electronic properties and metrology applications of the diamond NVcenter under pressure. Phys. Rev. Lett. 112, 047601 (2014).

    Article  Google Scholar 

  10. Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355–1359 (2019).

    Article  CAS  Google Scholar 

  11. Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359–1362 (2019).

  12. Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349–1354 (2019).

    Article  CAS  Google Scholar 

  13. Shang, Y. X. et al. Magnetic sensing inside a diamond anvil cell via nitrogen-vacancy center spins. Chin. Phys. Lett. 36, 086201 (2019).

    Article  CAS  Google Scholar 

  14. Ho, K. O. et al. Probing local pressure environment in anvil cells with nitrogen-vacancy (N-V) centres in diamond. Phys. Rev. Appl. 13, 024041 (2020).

    Article  CAS  Google Scholar 

  15. Schirhagl, R. et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  CAS  Google Scholar 

  16. Oliver, S. M. et al. Vector magnetic current imaging of an 8 nm process node chip and 3D current distributions using the quantum diamond microscope. ISTFA istfa2021p0096, 96–107 (2021).

  17. Garsi, M. et al. Non-invasive imaging of three-dimensional integrated circuit activity using quantum defects in diamond. Preprint at (2021).

  18. Chen, X. D. et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 99, 161903 (2011).

    Article  Google Scholar 

  19. Toyli, D. M. et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2, 031001 (2012).

    Google Scholar 

  20. Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  CAS  Google Scholar 

  21. Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).

    Article  CAS  Google Scholar 

  22. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    Article  CAS  Google Scholar 

  23. Nagy, R. et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).

    Article  Google Scholar 

  24. Wang, J. F. et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9, 4106 (2018).

    Article  Google Scholar 

  25. Lohrmann, A., Johnson, B. C., McCallum, J. C. & Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80, 034502 (2017).

    Article  CAS  Google Scholar 

  26. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    Article  CAS  Google Scholar 

  27. Zargaleh, S. A. et al. Nitrogen vacancy center in cubic silicon carbide: a promising qubit in the 1.5 μm spectral range for photonic quantum networks. Phys. Rev. B 98, 165203 (2018).

    Article  CAS  Google Scholar 

  28. Wang, J. F. et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature. Phys. Rev. Lett. 124, 223601 (2020).

    Article  CAS  Google Scholar 

  29. Mu, Z. et al. Coherent manipulation with resonant excitation and single emitter creation of nitrogen vacancy centers in 4H silicon carbide. Nano Lett. 20, 6142–6147 (2020).

    Article  CAS  Google Scholar 

  30. Simin, D. et al. All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide. Phys. Rev. X 6, 031014 (2016).

    Google Scholar 

  31. Anisimov, A. N. et al. Optical thermometry based on level anticrossing in silicon carbide. Sci. Rep. 6, 33301 (2016).

    Article  CAS  Google Scholar 

  32. Wang, J. F. Robust coherent control of solid-state spin qubits using anti-Stokes excitation. Nat. Commun. 12, 3223 (2021).

    Article  CAS  Google Scholar 

  33. Steele, L. G. et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl. Phys. Lett. 111, 221903 (2017).

    Article  Google Scholar 

  34. Ivády, V. et al. Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: a first-principles study. Phys. Rev. B 90, 235205 (2014).

    Article  Google Scholar 

  35. Dai, J.-H. et al. Optically detected magnetic resonance of diamond nitrogen-vacancy centers undermegabar pressures. Chin. Phys. Lett. 39, 117601 (2022).

    Article  Google Scholar 

  36. Fuchs, F. et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015).

    Article  CAS  Google Scholar 

  37. Niethammer, M. et al. Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nat. Commun. 10, 5569 (2019).

    Article  CAS  Google Scholar 

  38. Wang, J. F. et al. Efficient generation of an array of single silicon-vacancy defects in silicon carbide. Phys. Rev. Appl. 7, 064021 (2017).

    Article  Google Scholar 

  39. Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Appl. 9, 034022 (2018).

    Article  Google Scholar 

  40. Kamarád, J., Arnold, Z. & Schneider, J. Effect of pressure on the curie and spin reorientation temperatures of polycrystalline Nd2Fe14B compound. J. Magn. Magn. Mater. 67, 29–32 (1987).

  41. Sadewasser, S., Schilling, J. S., Paulikas, A. P. & Veal, B. W. Pressure dependence of Tc to 17 GPa with and without relaxation effects in superconducting YBa2Cu3Ox. Phys. Rev. B 61, 741 (2000).

    Article  CAS  Google Scholar 

  42. Chen, X. J., Lin, H. Q. & Gong, C. D. Pressure dependence of Tc in Y-Ba-Cu-O superconductors. Phys. Rev. Lett. 85, 2180 (2000).

    Article  CAS  Google Scholar 

  43. Waxman, A. et al. Diamond magnetometry of superconducting thin films. Phys. Rev. B. 89, 054509 (2014).

    Article  Google Scholar 

  44. Joshi, K. R. et al. Measuring the lower critical field of superconductors using nitrogen-vacancy centers in diamond optical magnetometry. Phys. Rev. Appl. 11, 014035 (2019).

    Article  CAS  Google Scholar 

  45. Nusran, N. M. et al. Spatially resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry. New J. Phys. 20, 043010 (2018).

  46. Rondin, L. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4, 2279 (2013).

    Article  CAS  Google Scholar 

  47. Casola, F. et al. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    Article  CAS  Google Scholar 

  48. Li, T. X. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    Article  CAS  Google Scholar 

  49. Zhang, L. L. et al. 2D materials and heterostructures at extreme pressure. Adv. Sci. 7, 2002697 (2020).

    Article  CAS  Google Scholar 

  50. Nie, L. P. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article  CAS  Google Scholar 

  51. Castelletto, S. et al. Fluorescent color centers in laser ablated 4H-SiC nanoparticles. Opt. Lett. 42, 1297–1300 (2017).

    Article  CAS  Google Scholar 

  52. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

    Article  Google Scholar 

  53. Wolfowicz, G. et al. Vanadium spin qubits as telecom quantum emitters in silicon carbide. Sci. Adv. 6, eaaz1192 (2020).

    Article  CAS  Google Scholar 

  54. Ho, K. O. et al. Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy (NV) center in diamond. J. Appl. Phys. 129, 241101 (2021).

    Article  CAS  Google Scholar 

  55. Wang, J. F. et al. On-demand generation of single silicon vacancy defects in silicon carbide. ACS Photon. 6, 1736–1743 (2019).

    Article  CAS  Google Scholar 

  56. Liu, X. D. et al. Counterintuitive effects of isotopic doping on the phase diagram of H2–HD–D2 molecular alloy. Proc. Natl Acad. Sci. USA 117, 13374–13378 (2020).

Download references


We thank G.-Q. Liu, E.-K. Liu and T. Wu for helpful discussions. This work was supported by the Innovation Program for Quantum Science and Technology (grant numbers 2021ZD0301400 and 2021ZD0301200), the National Natural Science Foundation of China (grant numbers U19A2075, 11975221, 11874361, 51672279, 51727806, 11774354, 61905233, 61725504, 11804330 and 11821404), the Science Challenge Project (grant number TZ2016001), the CAS Innovation Grant (grant number CXJJ-19-B08), the CAS HFIPS Director’s Fund (grant numbers YZJJ202102 and 2021YZGH03), the Anhui Initiative in Quantum Information Technologies (grant number AHY060300) and the Fundamental Research Funds for the Central Universities (grant number WK2030380017). X.-D.L. is grateful for support from the Youth Innovation Promotion Association of CAS (grant number 2021446) and the Anhui key research and development programme (grant number 2022h11020007) and J.-F.W. acknowledges financial support from the Science Specialty Program of Sichuan University (grant number 2020SCUNL210). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. We thank Hefei advanced crystal technologies LTD for the sample preparation.

Author information

Authors and Affiliations



J.-F.W., X.-D.L. and J.-S.X. conceived the experiments. J.-F.W. and L.L. built the experimental set-up and performed the measurements with the help of X.-D.L., Q.L., J.-Y.Z., J.-M.C., H.-A.X., W.X., J.-W.Y., W.-X.L., Z.-X.H., Z.-H.L., Z.-H.H. and H.-O.L. L.L., J.-F.W. and X.-D.L. prepared the samples in the SiC-based high-pressure chamber. D.-F.Z. prepared the YBCuO sample. Y.W. and W.L. preformed the implantation of the VSi defects. J.-F.W., J.-S.X., L.L. and X.-D.L. performed the data analysis with contributions from all co-authors. J.-F.W., J.-S.X., X.-D.L. and E.G. wrote the paper with contributions from all co-authors. J.-S.X., X.-D.L., E.G., C.-F.L. and G.-C.G. supervised the project. All authors contributed to the discussion of the results.

Corresponding authors

Correspondence to Xiao-Di Liu, Jin-Shi Xu, Eugene Gregoryanz or Chuan-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Norman Yao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Discussion and References.

Supplementary Data 1

PL images of the VSi defects at different pressures.

Supplementary Data 2

The efficiency-corrected count rates as a function of the pressure.

Supplementary Data 3

Tc of the YBa2Cu3O6.95 and YBa2Cu3O6.6 samples at ambient pressure.

Supplementary Data 4

ODMR spectra at a pressure of 12.3 GPa.

Source data

Source Data Fig. 1

The optical properties of the SiC anvil and VSi defects at different pressures.

Source Data Fig. 2

The spin properties of VSi defects at high pressures.

Source Data Fig. 3

The detection of the pressure-induced magnetic phase transition of a Nd2Fe14B magnet using shallow VSi defects.

Source Data Fig. 4

Measurement of the temperature‒pressure phase diagram of YBa2Cu3O6.6 using implanted VSi defects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JF., Liu, L., Liu, XD. et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide. Nat. Mater. 22, 489–494 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing