Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An ordered, self-assembled nanocomposite with efficient electronic and ionic transport


Mixed conductors—materials that can efficiently conduct both ionic and electronic species—are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the nanocomposite structure.
Fig. 2: Structural evolution of the material under electrochemical charging.
Fig. 3: Operando organic electrochemical transistor transfer curve.
Fig. 4: Electrochemical charge modulation spectroscopy.

Data availability

All the data supporting the findings of this study are available within the Article, its Supplementary Information or from the corresponding authors upon request. Source data are provided with this paper.


  1. Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005).

    Article  CAS  Google Scholar 

  2. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  3. Chen, C. C., Fu, L. & Maier, J. Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536, 159–164 (2016).

    Article  CAS  Google Scholar 

  4. Sata, N., Eberman, K., Eberl, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

    Article  CAS  Google Scholar 

  5. Casado, N. et al. Tuning electronic and ionic conductivities in composite materials for electrochemical devices. ACS Appl. Polym. Mater. 3, 1777–1784 (2021).

    Article  CAS  Google Scholar 

  6. del Olmo, R., Mendes, T. C., Forsyth, M. & Casado, N. Mixed ionic and electronic conducting binders containing PEDOT:PSSand organic ionic plastic crystals toward carbon-free solid-state battery cathodes. J. Mater. Chem. A 10, 19777–19786 (2022).

    Article  CAS  Google Scholar 

  7. Del Olmo, R., Casado, N., Olmedo-Martínez, J. L., Wang, X. & Forsyth, M. Mixed ionic-electronic conductors based on PEDOT:PolyDADMA and organic ionic plastic crystals. Polymers 12, 1981 (2020).

    Article  CAS  Google Scholar 

  8. Chen, H. et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118, 8936–8982 (2018).

    Article  CAS  Google Scholar 

  9. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    Article  CAS  Google Scholar 

  10. Tan, S. T. M. et al. Redox-active polymers designed for the circular economy of energy storage devices. ACS Energy Lett. 6, 3450–3457 (2021).

    Article  CAS  Google Scholar 

  11. Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).

    Article  CAS  Google Scholar 

  12. Tuchman, Y., Quill, T. J., LeCroy, G. & Salleo, A. A stacked hybrid organic/inorganic electrochemical random-access memory for scalable implementation. Adv. Electron. Mater. 8, 2100426 (2021).

    Article  Google Scholar 

  13. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article  CAS  Google Scholar 

  14. Melianas, A. et al. Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020).

    Article  CAS  Google Scholar 

  15. Lei, Z., Chen, B., Koo, Y. M. & Macfarlane, D. R. Introduction: ionic liquids. Chem. Rev. 117, 6633–6635 (2017).

    Article  Google Scholar 

  16. Wu, X. et al. Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater. 31, 1805544 (2019).

    Article  Google Scholar 

  17. Wu, X. et al. Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance organic electrochemical transistors. Adv. Funct. Mater. 32, 2108510 (2022).

    Article  CAS  Google Scholar 

  18. Quill, T. J. et al. Ion pair uptake in ion gel devices based on organic mixed ionic-electronic conductors. Adv. Funct. Mater. 31, 2104301 (2021).

    Article  CAS  Google Scholar 

  19. Hou, Y. & Hou, X. Bioinspired nanofluidic iontronics. Science 373, 628–629 (2021).

    Article  CAS  Google Scholar 

  20. Chun, H. & Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 8, 441–462 (2015).

    Article  CAS  Google Scholar 

  21. Bischak, C. G. et al. A reversible structural phase transition by electrochemically-driven ion injection into a conjugated polymer. J. Am. Chem. Soc. 142, 7434–7442 (2020).

    Article  CAS  Google Scholar 

  22. Thomas, E. M. et al. X-ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly(3-hexylthiophene). Adv. Funct. Mater. 28, 1803687 (2018).

    Article  Google Scholar 

  23. Paulsen, B. D. et al. Electrochemistry of thin films with in situ/operando grazing incidence X-ray scattering: bypassing electrolyte scattering for high fidelity time resolved studies. Small 17, 2103213 (2021).

    Article  CAS  Google Scholar 

  24. Flagg, L. Q. et al. In situ studies of the swelling by an electrolyte in electrochemical doping of ethylene glycol-substituted polythiophene. ACS Appl. Mater. Interfaces 14, 29052–29060 (2022).

    Article  CAS  Google Scholar 

  25. Thelen, J. L. et al. Relationship between mobility and lattice strain in electrochemically doped poly(3-hexylthiophene). ACS Macro Lett. 4, 1386–1391 (2015).

    Article  CAS  Google Scholar 

  26. Zhang, S., Beach, E., Anastas, P. T., Pfefferle, L. D. & Osuji, C. O. Self-assembly of supramolecular complexes of charged conjugated polymers and imidazolium-based ionic liquid crystals. Giant 9, 100088 (2022).

    Article  CAS  Google Scholar 

  27. Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).

    Article  CAS  Google Scholar 

  28. Cendra, C. et al. Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 29, 1807034 (2019).

    Article  Google Scholar 

  29. Hulea, I. N. et al. Wide energy-window view on the density of states and hole mobility in poly(p-phenylene vinylene). Phys. Rev. Lett. 93, 166601 (2004).

    Article  CAS  Google Scholar 

  30. Friedlein, J. T. et al. Influence of disorder on transfer characteristics of organic electrochemical transistors. Appl. Phys. Lett. 111, 023301 (2017).

    Article  Google Scholar 

  31. Chang, X., Balooch Qarai, M. & Spano, F. C. HJ-aggregates of donor–acceptor–donor oligomers and polymers. J. Chem. Phys. 155, 034905 (2021).

    Article  CAS  Google Scholar 

  32. Clark, J., Silva, C., Friend, R. H. & Spano, F. C. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007).

    Article  Google Scholar 

  33. Spano, F. C. Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 122, 234701 (2005).

    Article  Google Scholar 

  34. Clark, J., Chang, J. F., Spano, F. C., Friend, R. H. & Silva, C. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 94, 163306 (2009).

    Article  Google Scholar 

  35. Harris, J. K., Neelamraju, B. & Ratcliff, E. L. Intersystem subpopulation charge transfer and conformational relaxation preceding in situ conductivity in electrochemically doped poly(3-hexylthiophene) electrodes. Chem. Mater. 31, 6870–6879 (2019).

    Article  CAS  Google Scholar 

  36. Brown, P. J. et al. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 67, 064203 (2003).

    Article  Google Scholar 

  37. Spano, F. C. & Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477–500 (2014).

    Article  CAS  Google Scholar 

  38. Stejskal, E. O. & Tanner, J. E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965).

    Article  CAS  Google Scholar 

  39. Sinnaeve, D. The Stejskal–Tanner equation generalized for any gradient shape—an overview of most pulse sequences measuring free diffusion. Concepts Magn. Reson. 40A, 39–65 (2012).

    Article  CAS  Google Scholar 

  40. Hoarfrost, M. L., Tyagi, M. S., Segalman, R. A. & Reimer, J. A. Effect of confinement on proton transport mechanisms in block copolymer/ionic liquid membranes. Macromolecules 45, 3112–3120 (2012).

    Article  CAS  Google Scholar 

  41. Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Article  Google Scholar 

  42. Guardado, J. O. & Salleo, A. Structural effects of gating poly(3-hexylthiophene) through an ionic liquid. Adv. Funct. Mater. 27, 1701791 (2017).

    Article  Google Scholar 

  43. Lee, J. et al. Ion gel-gated polymer thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J. Phys. Chem. C 113, 8972–8981 (2009).

    Article  CAS  Google Scholar 

  44. Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).

    Article  CAS  Google Scholar 

  45. Spyropoulos, G. D., Gelinas, J. N. & Khodagholy, D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2020).

    Article  Google Scholar 

  46. Giovannitti, A. et al. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).

    Article  CAS  Google Scholar 

  47. Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    Article  CAS  Google Scholar 

  48. Dane, T. G. pygix. GitHub (2017).

Download references


We thank L. Richter for helpful discussions regarding X-ray scattering results, and E. Barks for assistance with ceramic polishing. T.J.Q. and G.L. acknowledge support from the National Science Foundation Graduate Research Fellowship Program under grant DGE-1656518. This material is based on work supported by the US Department of Energy (DOE), Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract no. DE‐SC0014664. A.G. and A.S. acknowledge funding from the TomKat Center for Sustainable Energy at Stanford University. A.S. gratefully acknowledges financial support from the National Science Foundation award no. DMR 1808401. The use of Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-2026822. A.S. and T.J.Q. acknowledge financial support from the National Science Foundation and the Semiconductor Research Corporation, E2CDA award no. 1739795. We thank H. Celik and UC Berkeley’s NMR facility in the College of Chemistry (CoC-NMR) for spectroscopic assistance; the instrument used in this work is supported by the National Science Foundation under grant no. 2018784. D.M.H. acknowledges support from the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US DOE, Office of Science, Basic Energy Sciences. I.M. acknowledges financial support from KAUST Office of Sponsored Research CRG10, by EU Horizon2020 grant agreement no. 952911, BOOSTER, grant agreement no. 862474, RoLA-FLEX, and grant agreement no. 101007084 CITYSOLAR, as well as EPSRC Projects EP/T026219/1 and EP/W017091/1.

Author information

Authors and Affiliations



T.J.Q., C.J.T., A.S. and A.G. conceived the study. T.J.Q. and C.J.T. performed the operando X-ray scattering experiments and analysed the data. T.J.Q. and G.L. carried out the spectroscopic measurements and G.L. performed the exciton fitting. D.M.H. performed the PFG NMR measurements under the supervision of J.A.R. and N.P.B. R.S. synthesized p(g2T-TT) under the supervision of I.M. T.J.Q., A.G. and A.S. wrote the manuscript and all the authors contributed to manuscript preparation and editing.

Corresponding authors

Correspondence to Alexander Giovannitti, Alberto Salleo or Christopher J. Takacs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Magnus Berggren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Notes 1–3 and Table 1.

Reporting Summary

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quill, T.J., LeCroy, G., Halat, D.M. et al. An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. Nat. Mater. 22, 362–368 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing